9 research outputs found
Evolved bacterial resistance against fluoropyrimidines can lower chemotherapy impact in the Caenorhabditis elegans host
Metabolism of host-targeted drugs by the microbiome can substantially impact host treatment success. However, since many host-targeted drugs inadvertently hamper microbiome growth, repeated drug administration can lead to microbiome evolutionary adaptation. We tested if evolved bacterial resistance against host-targeted drugs alters their drug metabolism and impacts host treatment success. We used a model system of Caenorhabditis elegans, its bacterial diet, and two fluoropyrimidine chemotherapies. Genetic screens revealed that most of loss-of-function resistance mutations in Escherichia coli also reduced drug toxicity in the host. We found that resistance rapidly emerged in E. coli under natural selection and converged to a handful of resistance mechanisms. Surprisingly, we discovered that nutrient availability during bacterial evolution dictated the dietary effect on the host - only bacteria evolving in nutrient-poor media reduced host drug toxicity. Our work suggests that bacteria can rapidly adapt to host-targeted drugs and by doing so may also impact the host
Human Gene-Centered Transcription Factor Networks for Enhancers and Disease Variants
SummaryGene regulatory networks (GRNs) comprising interactions between transcription factors (TFs) and regulatory loci control development and physiology. Numerous disease-associated mutations have been identified, the vast majority residing in non-coding regions of the genome. As current GRN mapping methods test one TF at a time and require the use of cells harboring the mutation(s) of interest, they are not suitable to identify TFs that bind to wild-type and mutant loci. Here, we use gene-centered yeast one-hybrid (eY1H) assays to interrogate binding of 1,086 human TFs to 246 enhancers, as well as to 109 non-coding disease mutations. We detect both loss and gain of TF interactions with mutant loci that are concordant with target gene expression changes. This work establishes eY1H assays as a powerful addition to the toolkit of mapping human GRNs and for the high-throughput characterization of genomic variants that are rapidly being identified by genome-wide association studies
WormPaths: Caenorhabditis elegans metabolic pathway annotation and visualization [preprint]
In our group, we aim to understand metabolism in the nematode Caenorhabditis elegans and its relationships with gene expression, physiology and the response to therapeutic drugs. On March 15, 2020, a stay-at-home order was put into effect in the state of Massachusetts, USA, to flatten the curve of the spread of the novel SARS-CoV2 virus that causes COVID-19. For biomedical researchers in our state, this meant putting a hold on experiments for nine weeks until May 18, 2020. To keep the lab engaged and productive, and to enhance communication and collaboration, we embarked on an in-lab project that we all found important but that we never had the time for: the detailed annotation and drawing of C. elegans metabolic pathways. As a result, we present WormPaths, which is composed of two parts: 1) the careful manual annotation of metabolic genes into pathways, categories and levels, and 2) 66 pathway maps that include metabolites, metabolite structures, genes, reactions, and pathway connections between maps. These maps are available on our WormFlux website. We show that WormPaths provides easy-to-navigate maps and that the different levels in WormPaths can be used for metabolic pathway enrichment analysis of transcriptomic data. In the unfortunate event of additional lockdowns, we envision further developing these maps to be more interactive, with an analogy of road maps that are available on mobile devices
Caenorhabditis elegans as a Model for Host-Microbe-Drug Interactions
The microbes that inhabit the human body, our microbiota, greatly influence our physiology and propensity for disease. For instance, the gut microbiota metabolizes compounds from our diet to provide important nutrients. Similarly, the microbiota has the potential to impact drug response; directly by metabolizing drugs, or indirectly by providing metabolites to the host. The complexity of the mammalian microbiota, and the limited throughput of such models, prohibit a systematic interrogation of specific interactions between microbes and host drug response. Here, I use C. elegans and its bacterial diet as a suitable model with the scalability and genetic tractability to address these questions. In Chapter II, I describe host-bacteria-drug interactions involving the anti-pyrimidine drugs 5-FU and FUDR. In brief, we identified two main mechanisms by which bacteria affect the C. elegans response to anti-pyrimidines: (1) metabolic conversion into FUMP by uridine phospho-ribosyltransferase (upp) and (2) dietary supplementation of uracil. Chapter III will focus on a selective estrogen-receptor modulator, TAM, with no clear target in bacteria or C. elegans. I will describe my work characterizing a bacteria-dependent response to TAM involving fatty acid metabolism. Lastly, the Appendix will summarize my efforts to expand the sample space of tested host-microbe-drug interactions
Bacterial Metabolism Affects the C. elegans Response to Cancer Chemotherapeutics
The human microbiota greatly affects physiology and disease; however, the contribution of bacteria to the response to chemotherapeutic drugs remains poorly understood. Caenorhabditis elegans and its bacterial diet provide a powerful system to study host-bacteria interactions. Here, we use this system to study how bacteria affect the C. elegans response to chemotherapeutics. We find that different bacterial species can increase the response to one drug yet decrease the effect of another. We perform genetic screens in two bacterial species using three chemotherapeutic drugs: 5-fluorouracil (5-FU), 5-fluoro-2\u27-deoxyuridine (FUDR), and camptothecin (CPT). We find numerous bacterial nucleotide metabolism genes that affect drug efficacy in C. elegans. Surprisingly, we find that 5-FU and FUDR act through bacterial ribonucleotide metabolism to elicit their cytotoxic effects in C. elegans rather than by thymineless death or DNA damage. Our study provides a blueprint for characterizing the role of bacteria in the host response to chemotherapeutics
WormPaths: Caenorhabditis elegans metabolic pathway annotation and visualization
In our group, we aim to understand metabolism in the nematode Caenorhabditis elegans and its relationships with gene expression, physiology and the response to therapeutic drugs. Visualization of the metabolic pathways that comprise the metabolic network is extremely useful for interpreting a wide variety of experiments. Detailed annotated metabolic pathway maps for C. elegans is mostly limited to pan-organismal maps, many with incomplete or inaccurate pathway and enzyme annotations. Here we present WormPaths, which is composed of two parts: 1) the careful manual annotation of metabolic genes into pathways, categories and levels, and 2) 62 pathway maps that include metabolites, metabolite structures, genes, reactions, and pathway connections between maps. These maps are available on the WormFlux website. We show that WormPaths provides easy-to-navigate maps and that the different levels in WormPaths can be used for metabolic pathway enrichment analysis of transcriptomic data. In the future we envision further developing these maps to be more interactive, with an analogy of road maps that are available on mobile devices