20,323 research outputs found
Role of resonances in rho^0 -> pi^+ pi^- gamma
We study the effect of the sigma(600) and a_1(1260) resonances in the rho^0
-> pi^+ pi^- gamma decay, within the meson dominance model. Major effects are
driven by the mass and width parameters of the sigma(600), and the usually
neglected contribution of the a_1(1260), although small by itself, may become
sizable through its interference with pion bremsstrahlung, and the proper
relative sign can favor the central value of the experimental branching ratio.
We present a procedure, using the gauge invariant structure of the resonant
amplitudes, to kinematically enhance the resonant effects in the angular and
energy distribution of the photon. We also elaborate on the coupling constants
involved.Comment: 5 pages, 5 figures, accepted for publication in PR
Gluino zero-modes for non-trivial holonomy calorons
We couple fermion fields in the adjoint representation (gluinos) to the SU(2)
gauge field of unit charge calorons defined on R^3 x S_1. We compute
corresponding zero-modes of the Dirac equation. These are relevant in
semiclassical studies of N=1 Super-symmetric Yang-Mills theory. Our formulas,
show that, up to a term proportional to the vector potential, the modes can be
constructed by different linear combinations of two contributions adding up to
the total caloron field strength.Comment: 17 pages, 3 Postscript figures, late
Didactic strategies for comprehension and learning of structural concepts
p. 926-937In previous papers we have established the convenience of formulating educational
strategies at the university level for both disciplines: Civil Engineering and Architecture,
which involves academic topics of mutual interest by means of shared practices. As a
particular matter of this approach, the application of physical experimental models is
considered of special usefulness, in order to understand in better ways the performance of materials and structural systems.
Several strategies of selection and development of such physical models will be discussed in this work, considering as a first step, the establishment of its correspondence with the different levels of structural complexity studied in curriculum plan: statics, strength of materials and structural design, among others.
This task constitutes a part of the work program of the Laboratory of Structural Models,
which is an academic project that develops and applies different didactic prototypes to
structure courses in the Universidad Autónoma Metropolitana, campus Azcapotzalco, in
Mexico City, project we have already presented in recent forums.
Two different modes of application are implemented in classroom sessions and in
structures workshop: the devices for functional demonstration of typical cases of structural work as well as the experimentation with student's own designs of destructible models where certain typologies are tested up to its failure limit.
The first one allows teachers to explain adequately the theoretical principles and formulas
(that usually are expressed on the blackboard) by means of didactic models identified in
accordance to specific cases of the curriculum on variable level of complexity. This kind of practice allows the students of architecture and civil engineering to realize in better ways the possibilities of use and application of the different structural typologies. Such
experimental models are part of more than fifty devices of the Laboratory's catalog.
In the same sense, the possibility of observation of structural work of their own
architectural designs, allows future professionals to achieve a better conception of the
structural solutions that affect positively their designs. Based on specific predefined guides, the students develop their own architectural-structural projects and subject them to diverse loads, observing their behavior under the influence of variable stresses leading up the experiment to its last resistance.
From both experiences a significant learning is obtained for the student's formation and
training, who will be capable in his future professional work to use better tools of
comprehension of the structural concepts applied to architecture as well as of increasing his conscience of the benefits and convenience of multidisciplinary work.Moreno, C.; Abad, A.; Gerdingh, JG.; Garcia M., C.; Gonzalez C., O. (2010). Didactic strategies for comprehension and learning of structural concepts. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/695
Opportunities of Base of the Pyramid from the Perspective of Resources and Capabilities
This paper addresses the issue of the Base of the pyramid (BOP) from the perspective of resources and capabilities, analyzing the best strategies to enter the market, making appropriate use of internal resources, which is the main determinant of innovation and organizational capabilities with which have good results, and success stories of Mexican companies were analyzed
Anomalous Higgs Couplings
We review the effects of new effective interactions on the Higgs boson
phenomenology. New physics in the electroweak bosonic sector is expected to
induce additional interactions between the Higgs doublet field and the
electroweak gauge bosons leading to anomalous Higgs couplings as well as to
anomalous gauge-boson self-interactions. Using a linearly realized invariant effective Lagrangian to describe the bosonic sector of
the Standard Model, we review the effects of the new effective interactions on
the Higgs boson production rates and decay modes. We summarize the results from
searches for the new Higgs signatures induced by the anomalous interactions in
order to constrain the scale of new physics in particular at CERN LEP and
Fermilab Te vatron colliders.Comment: 35 pages, latex using epsfig.sty psfig.sty and axodraw.sty, 16
postscript figure
The accretion disk in the post period-minimum cataclysmic variable SDSS J080434.20+510349.2
This study of SDSS0804 is primarily concerned with the double-hump shape in
the light curve and its connection with the accretion disk in this bounce-back
system. Time-resolved photometric and spectroscopic observations were obtained
to analyze the behavior of the system between superoutbursts. A geometric model
of a binary system containing a disk with two outer annuli spiral density waves
was applied to explain the light curve and the Doppler tomography. Observations
were carried out during 2008-2009, after the object's magnitude decreased to
V~17.7(0.1) from the March 2006 eruption. The light curve clearly shows a
sinusoid-like variability with a 0.07 mag amplitude and a 42.48 min
periodicity, which is half of the orbital period of the system. In Sept. 2010,
the system underwent yet another superoutburst and returned to its quiescent
level by the beginning of 2012. This light curve once again showed a
double-humps, but with a significantly smaller ~0.01mag amplitude. Other types
of variability like a "mini-outburst" or SDSS1238-like features were not
detected. Doppler tomograms, obtained from spectroscopic data during the same
period of time, show a large accretion disk with uneven brightness, implying
the presence of spiral waves. We constructed a geometric model of a bounce-back
system containing two spiral density waves in the outer annuli of the disk to
reproduce the observed light curves. The Doppler tomograms and the
double-hump-shape light curves in quiescence can be explained by a model system
containing a massive >0.7Msun white dwarf with a surface temperature of
~12000K, a late-type brown dwarf, and an accretion disk with two outer annuli
spirals. According to this model, the accretion disk should be large, extending
to the 2:1 resonance radius, and cool (~2500K). The inner parts of the disk
should be optically thin in the continuum or totally void.Comment: 12 pages, 15 figures, accepted for publication in A&
Global Analysis of Neutrino Data
In this talk I review the present status of neutrino masses and mixing and
some of their implications for particle physics phenomenology. I first discuss
the minimum extension of the Standard Model of particle physics required to
accommodate neutrino masses and introduce the new parameters present in the
model and in particular the possibility of leptonic mixing. I then describe the
phenomenology of neutrino masses and mixing leading to flavour oscillations and
present the existing evidence from solar, reactor, atmospheric and
long-baseline neutrinos as well as the results from laboratory searches at
short distances. I derive the allowed ranges for the mass and mixing parameters
when the bulk of data is consistently analyzed in the framework of mixing
between the three active neutrinos and obtain as a result the most up-to-date
determination of the leptonic mixing matrix. Then I briefly summarize the
status of some proposed phenomenological explanations to accommodate the LSND
results: the role of sterile neutrinos and the violation of CPT. Finally I
comment how within the present experimental precision it is possible to use the
observation of oscillation patterns to impose severe constraints on the
possible violation of fundamental symmetries in particle physics such as
Lorentz invariance or the weak equivalence principle.Comment: Talk given at the Nobel Symposium on Neutrino Physics, Haga Slott,
Enkoping, Swede
Neutrino masses, cosmological bound and four zero Yukawa textures
Four zero neutrino Yukawa textures in a specified weak basis, combined with
symmetry and type-I seesaw, yield a highly constrained and predictive
scheme. Two alternately viable light neutrino Majorana mass matrices
result with inverted/normal mass ordering. Neutrino
masses, Majorana in character and predicted within definite ranges with
laboratory and cosmological inputs, will have their sum probed cosmologically.
The rate for decay, though generally below the reach of
planned experiments, could approach it in some parameter region. Departure from
symmetry due to RG evolution from a high scale and consequent CP
violation, with a Jarlskog invariant whose magnitude could almost reach
, are explored.Comment: Published versio
p p -> j j e+/- mu+/- nu nu and j j e+/- mu-/+ nu nu at O(\alpha_{em}^6) and O(\alpha_{em}^4 \alpha_s^2) for the Study of the Quartic Electroweak Gauge Boson Vertex at LHC
We analyze the potential of the CERN Large Hadron Collider (LHC) to study the
structure of quartic vector-boson interactions through the pair production of
electroweak gauge bosons via weak boson fusion q q -> q q W W. In order to
study these couplings we have performed a partonic level calculation of all
processes p p -> j j e+/- mu+/- nu nu and pp -> j j e+/- mu-/+ nu nu at the LHC
using the exact matrix elements at O(\alpha_{em}^6) and O(\alpha_{em}^4
\alpha_s^2) as well as a full simulation of the t tbar plus 0 to 2 jets
backgrounds. A complete calculation of the scattering amplitudes is necessary
not only for a correct description of the process but also to preserve all
correlations between the final state particles which can be used to enhance the
signal. Our analyses indicate that the LHC can improve by more than one order
of magnitude the bounds arising at present from indirect measurements.Comment: 26 pages, 8 figures, revised version with some typos corrected, and
some comments and references adde
- …