120 research outputs found
White dwarf cooling sequences and cosmochronology
The evolution of white dwarfs is a simple gravothermal process. This means
that their luminosity function, i.e. the number of white dwarfs per unit
bolometric magnitude and unit volume as a function of bolometric magnitude, is
a monotonically increasing function that decreases abruptly as a consequence of
the finite age of the Galaxy. The precision and the accuracy of the white dwarf
luminosity functions obtained with the recent large surveys together with the
improved quality of the theoretical models of evolution of white dwarfs allow
to feed the hope that in a near future it will be possible to reconstruct the
history of the different Galactic populations.Comment: Proceedings of the 40th Liege International Astrophysical Colloquium:
Aging low mass stars: from red giants to white dwarf
The ages of very cool hydrogen-rich white dwarfs
The evolution of white dwarfs is essentially a cooling process that depends
primarily on the energy stored in their degenerate cores and on the
transparency of their envelopes. In this paper we compute accurate cooling
sequences for carbon-oxygen white dwarfs with hydrogen dominated atmospheres
for the full range of masses of interest. For this purpose we use the most
accurate available physical inputs for both the equation of state and opacities
of the envelope and for the thermodynamic quantities of the degenerate core. We
also investigate the role of the latent heat in the computed cooling sequences.
We present separately cooling sequences in which the effects of phase
separation of the carbon-oxygen binary mixture upon crystallization have been
neglected, and the delay introduced in the cooling times when this mechanism is
properly taken into account, in order to compare our results with other
published cooling sequences which do not include a treatment of this
phenomenon. We find that the cooling ages of very cool white dwarfs with pure
hydrogen atmospheres have been systematically underestimated by roughly 1.5 Gyr
at log(L/Lo)=-4.5 for an otherwise typical 0.6 Mo white dwarf, when phase
separation is neglected. If phase separation of the binary mixture is included
then the cooling ages are further increased by roughly 10%. Cooling tracks and
cooling isochrones in several color-magnitude diagrams are presented as well.Comment: 8 Pages; ApJ, accepted for publicatio
Monte Carlo simulations of the halo white dwarf population
The interpretation of microlensing results towards the Large Magellanic Cloud
(LMC) still remains controversial. Whereas white dwarfs have been proposed to
explain these results and, hence, to contribute significantly to the mass
budget of our Galaxy, there are as well several constraints on the role played
by white dwarfs. In this paper we analyze self-consistently and simultaneously
four different results, namely, the local halo white dwarf luminosity function,
the microlensing results reported by the MACHO team towards the LMC, the
results of Hubble Deep Field (HDF) and the results of the EROS experiment, for
several initial mass functions and halo ages. We find that the proposed
log-normal initial mass functions do not contribute to solve the problem posed
by the observed microlensing events and, moreover, they overproduce white
dwarfs when compared to the results of the HDF and of the EROS survey. We also
find that the contribution of hydrogen-rich white dwarfs to the dynamical mass
of the halo of the Galaxy cannot be more than .Comment: 17 pages, 10 figures; accepted for publication in Astronomy and
Astrophysic
On the White Dwarf distances to Galactic Globular Clusters
We analyze in detail various possible sources of systematic errors on the
distances of globular clusters derived by fitting a local template DA white
dwarf sequence to the cluster counterpart (the so-called WD-fitting technique).
We find that the unknown thickness of the hydrogen layer of white dwarfs in
clusters plays a non negligible role. For reasonable assumptions - supported by
the few sparse available observational constraints - about the unknown mass and
thickness of the hydrogen layer for the cluster white dwarfs, a realistic
estimate of the systematic error on the distance is within +-0.10 mag. However,
particular combinations of white dwarf masses and envelope thicknesses - which
at present cannot be excluded a priori - could produce larger errors.
Contamination of the cluster DA sequence by non-DA white dwarfs introduces a
very small systematic error of about -0.03 mag in the Mv/(V-I) plane, but in
the Mv/(B-V) plane the systematic error amounts to ~ +0.20 mag. Contamination
by white dwarfs with helium cores should not influence appreciably the
WD-fitting distances. Finally, we obtain a derivative D((m-M)v)/D(E(B-V))~ -5.5
for the WD-fitting distances, which is very similar to the dependence found
when using the Main Sequence fitting technique.Comment: 12 pages, 11 figures A&A, accepted for publicatio
Carbon burning in intermediate mass primordial stars
The evolution of a zero metallicity 9 M_s star is computed, analyzed and
compared with that of a solar metallicity star of identical ZAMS mass. Our
computations range from the main sequence until the formation of a massive
oxygen-neon white dwarf. Special attention has been payed to carbon burning in
conditions of partial degeneracy as well as to the subsequent thermally pulsing
Super-AGB phase. The latter develops in a fashion very similar to that of a
solar metallicity 9 M_s star, as a consequence of the significant enrichment in
metals of the stellar envelope that ensues due to the so-called third dredge-up
episode. The abundances in mass of the main isotopes in the final ONe core
resulting from the evolution are X(^{16}O) approx 0.59, X(^{20}Ne) approx 0.28
and X(^{24}Mg) approx 0.05. This core is surrounded by a 0.05 M_s buffer mainly
composed of carbon and oxygen, and on top of it a He envelope of mass 10^{-4}
M_sComment: 11 pages, 11 figures, accepted for publication in A&
- …