29 research outputs found

    Phase transition in Random Circuit Sampling

    Full text link
    Quantum computers hold the promise of executing tasks beyond the capability of classical computers. Noise competes with coherent evolution and destroys long-range correlations, making it an outstanding challenge to fully leverage the computation power of near-term quantum processors. We report Random Circuit Sampling (RCS) experiments where we identify distinct phases driven by the interplay between quantum dynamics and noise. Using cross-entropy benchmarking, we observe phase boundaries which can define the computational complexity of noisy quantum evolution. We conclude by presenting an RCS experiment with 70 qubits at 24 cycles. We estimate the computational cost against improved classical methods and demonstrate that our experiment is beyond the capabilities of existing classical supercomputers

    Measurement-Induced State Transitions in a Superconducting Qubit: Within the Rotating Wave Approximation

    Full text link
    Superconducting qubits typically use a dispersive readout scheme, where a resonator is coupled to a qubit such that its frequency is qubit-state dependent. Measurement is performed by driving the resonator, where the transmitted resonator field yields information about the resonator frequency and thus the qubit state. Ideally, we could use arbitrarily strong resonator drives to achieve a target signal-to-noise ratio in the shortest possible time. However, experiments have shown that when the average resonator photon number exceeds a certain threshold, the qubit is excited out of its computational subspace, which we refer to as a measurement-induced state transition. These transitions degrade readout fidelity, and constitute leakage which precludes further operation of the qubit in, for example, error correction. Here we study these transitions using a transmon qubit by experimentally measuring their dependence on qubit frequency, average photon number, and qubit state, in the regime where the resonator frequency is lower than the qubit frequency. We observe signatures of resonant transitions between levels in the coupled qubit-resonator system that exhibit noisy behavior when measured repeatedly in time. We provide a semi-classical model of these transitions based on the rotating wave approximation and use it to predict the onset of state transitions in our experiments. Our results suggest the transmon is excited to levels near the top of its cosine potential following a state transition, where the charge dispersion of higher transmon levels explains the observed noisy behavior of state transitions. Moreover, occupation in these higher energy levels poses a major challenge for fast qubit reset

    Overcoming leakage in scalable quantum error correction

    Full text link
    Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC). In a QEC circuit, leakage builds over time and spreads through multi-qubit interactions. This leads to correlated errors that degrade the exponential suppression of logical error with scale, challenging the feasibility of QEC as a path towards fault-tolerant quantum computation. Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle. This shortens the lifetime of leakage and curtails its ability to spread and induce correlated errors. We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than 1×10−31 \times 10^{-3} throughout the entire device. The leakage removal process itself efficiently returns leakage population back to the computational basis, and adding it to a code circuit prevents leakage from inducing correlated error across cycles, restoring a fundamental assumption of QEC. With this demonstration that leakage can be contained, we resolve a key challenge for practical QEC at scale.Comment: Main text: 7 pages, 5 figure

    Model calibration using a parallel differential evolution algorithm in computational neuroscience: Simulation of stretch induced nerve deficit

    No full text
    Neuronal damage, in the form of both brain and spinal cord injuries, is one of the major causes of disability and death in young adults worldwide. One way to assess the direct damage occurring after a mechanical insult is the simulation of the neuronal cells functional deficits following the mechanical event. In this study, we use a coupled electrophysiological-mechanical model with several free parameters that are required to be calibrated against experimental results. The calibration is carried out by means of an evolutionary algorithm (differential evolution, DE) that needs to evaluate each configuration of parameters on six different damage cases, each of them taking several minutes to compute. To minimise the simulation time of the parameter tuning for the DE, the stretch of one unique fixed-diameter axon with a simplified triggering process is used to speed up the calculations. The model is then leveraged for the parameter optimization of the more realistic bundle of independent axons, an impractical configuration to run on a single processor computer. To this end, we have developed a parallel implementation based on OpenMP that runs on a multi-processor taking advantage of all the available computational power. The parallel DE algorithm obtains good results, outperforming the best effort achieved by published manual calibration, in a fraction of the time. While not being able to fully capture the experimental results, the resulting nerve model provides a complex averaging framework for nerve damage simulation able to simulate gradual axonal functional alteration in a bundle

    Model calibration using a parallel differential evolution algorithm in computational neuroscience: Simulation of stretch induced nerve deficit

    No full text
    Neuronal damage, in the form of both brain and spinal cord injuries, is one of the major causes of disability and death in young adults worldwide. One way to assess the direct damage occurring after a mechanical insult is the simulation of the neuronal cells functional deficits following the mechanical event. In this study, we use a coupled electrophysiological-mechanical model with several free parameters that are required to be calibrated against experimental results. The calibration is carried out by means of an evolutionary algorithm (differential evolution, DE) that needs to evaluate each configuration of parameters on six different damage cases, each of them taking several minutes to compute. To minimise the simulation time of the parameter tuning for the DE, the stretch of one unique fixed-diameter axon with a simplified triggering process is used to speed up the calculations. The model is then leveraged for the parameter optimization of the more realistic bundle of independent axons, an impractical configuration to run on a single processor computer. To this end, we have developed a parallel implementation based on OpenMP that runs on a multi-processor taking advantage of all the available computational power. The parallel DE algorithm obtains good results, outperforming the best effort achieved by published manual calibration, in a fraction of the time. While not being able to fully capture the experimental results, the resulting nerve model provides a complex averaging framework for nerve damage simulation able to simulate gradual axonal functional alteration in a bundle
    corecore