14,524 research outputs found

    Non-analyticities in three-dimensional gauge theories

    Full text link
    Quantum fluctuations generate in three-dimensional gauge theories not only radiative corrections to the Chern-Simons coupling but also non-analytic terms in the effective action. We review the role of those terms in gauge theories with massless fermions and Chern-Simons theories. The explicit form of non-analytic terms turns out to be dependent on the regularization scheme and in consequence the very existence of phenomena like parity and framing anomalies becomes regularization dependent. In particular we find regularization regimes where both anomalies are absent. Due to the presence of non-analytic terms the effective action becomes not only discontinuous but also singular for some background gauge fields which include sphalerons. The appearence of this type of singularities is linked to the existence of nodal configurations in physical states and tunneling suppression at some classical field configurations. In the topological field theory the number of physical states may also become regularization dependent. Another consequence of the peculiar behaviour of three-dimensional theories under parity odd regularizations is the existence of a simple mechanism of generation of a mass gap in pure Yang-Mills theory by a suitable choice of regularization scheme. The generic value of this mass does agree with the values obtained in Hamiltonian and numerical analysis. Finally, the existence of different regularization regimes unveils the difficulties of establishing a Zamolodchikov c-theorem for three-dimensional field theories in terms of the induced gravitational Chern-Simons couplings.Comment: 21 pages; Contribution to Ian Kogan Memorial Collection, ``From Fields to Strings: Circumnavigating Theoretical Physics'

    Monitoring luminous yellow massive stars in M33: new yellow hypergiant candidates

    Full text link
    The evolution of massive stars surviving the red supergiant (RSG) stage remains unexplored due to the rarity of such objects. The yellow hypergiants (YHGs) appear to be the warm counterparts of post-RSG classes located near the Humphreys-Davidson upper luminosity limit, which are characterized by atmospheric instability and high mass-loss rates. We aim to increase the number of YHGs in M33 and thus to contribute to a better understanding of the pre-supernova evolution of massive stars. Optical spectroscopy of five dust-enshrouded YSGs selected from mid-IR criteria was obtained with the goal of detecting evidence of extensive atmospheres. We also analyzed BVI photometry for 21 of the most luminous YSGs in M33 to identify changes in the spectral type. To explore the properties of circumstellar dust, we performed SED-fitting of multi-band photometry of the 21 YSGs. We find three luminous YSGs in our sample to be YHG candidates, as they are surrounded by hot dust and are enshrouded within extended, cold dusty envelopes. Our spectroscopy of star 2 shows emission of more than one Hα\alpha component, as well as emission of CaII, implying an extended atmospheric structure. In addition, the long-term monitoring of the star reveals a dimming in the visual light curve of amplitude larger than 0.5 mag that caused an apparent drop in the temperature that exceeded 500 K. We suggest the observed variability to be analogous to that of the Galactic YHG ρ\rho Cas. Five less luminous YSGs are suggested as post-RSG candidates showing evidence of hot or/and cool dust emission. We demonstrate that mid-IR photometry, combined with optical spectroscopy and time-series photometry, provide a robust method for identifying candidate YHGs. Future discovery of YHGs in Local Group galaxies is critical for the study of the late evolution of intermediate-mass massive stars.Comment: 24 pages, 12 figures, 7 Tables. A&A in pres

    Identification of red supergiants in nearby galaxies with mid-IR photometry

    Full text link
    The role of episodic mass loss in massive star evolution is one of the most important open questions of current stellar evolution theory. Episodic mass loss produces dust and therefore causes evolved massive stars to be very luminous in the mid-infrared and dim at optical wavelengths. We aim to increase the number of investigated luminous mid-IR sources to shed light on the late stages of these objects. To achieve this we employed mid-IR selection criteria to identity dusty evolved massive stars in two nearby galaxies. The method is based on mid-IR colors, using 3.6 {\mu}m and 4.5 {\mu}m photometry from archival Spitzer Space Telescope images of nearby galaxies and J-band photometry from 2MASS. We applied our criteria to two nearby star-forming dwarf irregular galaxies, Sextans A and IC 1613, selecting eight targets, which we followed up with spectroscopy. Our spectral classification and analysis yielded the discovery of two M-type supergiants in IC 1613, three K-type supergiants and one candidate F-type giant in Sextans A, and two foreground M giants. We show that the proposed criteria provide an independent way for identifying dusty evolved massive stars, that can be extended to all nearby galaxies with available Spitzer/IRAC images at 3.6 {\mu}m and 4.5 {\mu}m.Comment: 8 pages, 4 figures, A&A in pres

    Relationship between fibre orientation and tensile strength of natural collagen membranes for heart valve leaflets

    Get PDF
    Heart valve prostheses are used to replace native heart valves which that are damaged because of congenital diseases or due to ageing. Biological prostheses made of bovine pericardium are similar to native valves and do not require any anticoagulation treatment, but are less durable than mechanical prostheses and usually fail by tearing. Researches are oriented in improving the resistance and durability of biological heart valve prostheses in order to increase their life expectancy. To understand the mechanical behaviour of bovine pericardium and relate it to its microstructure (mainly collagen fibres concentration and orientation) uniaxial tensile tests have been performed on a model material made of collagen fibres. Small Angle Light Scattering (SALS) has been also used to characterize the microstructure without damaging the material. Results with the model material allowed us to obtain the orientation of the fibres, relating the microstructure to mechanical performanc
    • 

    corecore