15 research outputs found

    Sunlight damage to cellular DNA : focus on oxidatively generated lesions.

    Get PDF
    The routine and often unavoidable exposure to solar ultraviolet (UV) radiation makes it one of the most significant environmental DNA-damaging agents to which humans are exposed. Sunlight, specifically UVB and UVA, triggers various types of DNA damage. Although sunlight, mainly UVB, is necessary for the production of vitamin D, which is necessary for human health, DNA damage may have several deleterious consequences, such as cell death, mutagenesis, photoaging and cancer. UVA and UVB photons can be directly absorbed not only by DNA, which results in lesions, but also by the chromophores that are present in skin cells. This process leads to the formation of reactive oxygen species, which may indirectly cause DNA damage. Despite many decades of investigation, the discrimination among the consequences of these different types of lesions is not clear. However, human cells have complex systems to avoid the deleterious effects of the reactive species produced by sunlight. These systems include antioxidants, that protect DNA, and mechanisms of DNA damage repair and tolerance. Genetic defects in these mechanisms that have clear harmful effects in the exposed skin are found in several human syndromes. The best known of these is xeroderma pigmentosum (XP), whose patients are defective in the nucleotide excision repair (NER) and translesion synthesis (TLS) pathways. These patients are mainly affected due to UV-induced pyrimidine dimers, but there is growing evidence that XP cells are also defective in the protection against other types of lesions, including oxidized DNA bases. This raises a question regarding the relative roles of the various forms of sunlight-induced DNA damage on skin carcinogenesis and photoaging. Therefore, knowledge of what occurs in XP patients may still bring important contributions to the understanding of the biological impact of sunlight-induced deleterious effects on the skin cells

    The antioxidant and anti-inflammatory properties of lycopene in mice lungs exposed to cigarette smoke.

    Get PDF
    Lycopene is a carotenoid with knownantioxidant and anti-inflammatory properties.Weaimed to evaluate the in vitro and in vivo effects of lycopene on reducing the redox imbalance and inflammation induced by cigarette smoke (CS). For the in vitro study, J774A.1 (macrophages) cells were incubated in the presence of 0.5, 1.0, 2.0, 4.0, 8.0, 10.0 and 25 ?Mof lycopene for 3, 6 and 24 h or in the presence of 0.1%, 0.25%, 0.5%, 0.625%, 1.25%, 2.25%, 5% and 10% cigarette smoke extract (CSE) for 3, 6 and 24 h to assess cell viability and measurement of intracellular reactive oxygen species (ROS). For the in vivo study, 40 micewere divided into 5 groups: a control exposed to ambient air (CG), a vehicle-control group that received 200 ?l of sunflower oil by orogastric gavage, a group exposed to CS and two groups administered lycopene (diluted in sunflower oil) at doses of either 25 or 50 mg/kg/day prior to exposure to CS (LY25+CS and LY50+CS). The total treatment time lasted 5 days. A cell viability decreasewas observed at 10- and 25-?Mconcentrations of lycopene in 3, 6 and 24 h compared with CG. Therewas an increase ofROS production in 24 h in CS compared with CG. Lycopene concentrations of 1 ?Mand 2 ?Mwere able to reduce the production of ROS in 24 h comparedwith CS. In the bronchoalveolar lavage fluid, the total number of leukocytes increased in the CS group compared with the control groups (CG). Administrationwith lycopene at the highest dose suppressed this CS-induced increase in leukocytes. Lipid peroxidation and DNA damage increased in the CS group comparedwith that in the controls, and this increase was suppressed by lycopene at the highest dose. In contrast, superoxide dismutase activity decreased in the CS group compared with that in the controls. Catalase activity also increased in the CS group compared with that in both control groups, and this increase was suppressed in LY25+CS and LY50+CS. There was an increase in the levels of tumor necrosis factor-?, interferon-? and interleukin-10 after exposure to CS, and these effects were suppressed by both doses of lycopene. These data elucidate the role of lycopene as an antioxidant and anti-inflammatory agent in these two models of short-term exposure to CS

    Sustained kidney biochemical derangement in treated experimental diabetes : a clue to metabolic memory.

    Get PDF
    The occurrence of biochemical alterations that last for a long period of time in diabetic individuals even after adequate handling of glycemia is an intriguing phenomenon named metabolic memory. In this study, we show that a kidney pathway is gradually altered during the course of diabetes and remains persistently changed after late glycemic control in streptozotocin-induced diabetic rats. This pathway comprises an early decline of uric acid clearance and pAMPK expression followed by fumarate accumulation, increased TGF-? expression, reduced PGC-1? expression, and downregulation of methylation and hydroxymethylation of mitochondrial DNA. The sustained decrease of uric acid clearance in treated diabetes may support the prolonged kidney biochemical alterations observed after tight glycemic control, and this regulation is likely mediated by the sustained decrease of AMPK activity and the induction of inflammation. This manuscript proposes the first consideration of the possible role of hyperuricemia and the underlying biochemical changes as part of metabolic memory in diabetic nephropathy development after glycemic control

    Analyses of seven new genomes of Xanthomonas citri pv. aurantifolii strains, causative agents of Citrus Canker B and C, show a reduced repertoire of pathogenicity-related genes.

    Get PDF
    Xanthomonas citri pv. aurantifolii pathotype B (XauB) and pathotype C (XauC) are the causative agents respectively of citrus canker B and C, diseases of citrus plants related to the better-known citrus canker A, caused by Xanthomonas citri pv. citri. The study of the genomes of strains of these related bacterial species has the potential to bring new understanding to the molecular basis of citrus canker as well as their evolutionary history. Up to now only one genome sequence of XauB and only one genome sequence of XauC have been available, both in draft status. Here we present two new genome sequences of XauB (both complete) and five new genome sequences of XauC (two complete). A phylogenomic analysis of these seven genome sequences along with 24 other related Xanthomonas genomes showed that there are two distinct and wellsupported major clades, the XauB and XauC clade and the Xanthomonas citri pv. citri clade. An analysis of 62 Type III Secretion System effector genes showed that there are 42 effectors with variable presence/absence or pseudogene status among the 31 genomes analyzed. A comparative analysis of secretion-system and surfacestructure genes showed that the XauB and XauC genomes lack several key genes in pathogenicity-related subsystems. These subsystems, the Types I and IV Secretion Systems, and the Type IV pilus, therefore emerge as important ones in helping explain the aggressiveness of the A type of citrus canker and the apparent dominance in the field of the corresponding strain over the B and C strains

    Isolation and purification of bacterial siderophores : a multidisciplinary educational approach.

    No full text
    As bact?rias promovem a capta??o ambiental de ferro pela produ??o e secre??o de sider?foros, que quelam o ferro e s?o posteriormente internalizadas para fornecer esse essencial metal ao metabolismo celular. Neste estudo, descrevemos uma sequ?ncia did?tica que permitir? aos estudantes de gradua??o isolar, purificar parcialmente e classificar os sider?foros produzidos por bact?rias de diferentes ambientes. Essa proposta foi avaliada com alunos do mestrado profissional em ensino de ci?ncias abordando par?metros metodol?gicos e aprendizagem conceitual associado ? metodologia. Os resultados mostraram que essa sequ?ncia did?tica pode trabalhar tem?ticas bioqu?micas em conjunto com uma abordagem multidisciplinar e de baixo custo, permitindo a discuss?o de quest?es-chave em diferentes ?reas do conhecimento biol?gico que ? frequentemente negligenciada em estudos universit?rios.Bacteria promote environmental iron uptake by the production and secretion of siderophores, which sequester iron and are subsequently internalized to provide this essential metal for cellular metabolism. In this study, we describe a didactic sequence that will enable undergraduate students to isolate, partially purify, and classify siderophores produced by bacteria from different environments. This proposal was evaluated with students of professional master?s in science teaching approaching methodological parameters and conceptual learning associated with the methodology. Results shows that this didactic sequence can work biochemical contents in tandem with a multidisciplinary and low-cost approach, allowing for the discussion of key issues in different areas of biological knowledge, which is often neglected in university studies

    ATR/Chk1 pathway is activated by oxidative stress in response to UVA light in human Xeroderma Pigmentosum Variant cells.

    No full text
    The crucial role of DNA polymerase eta in protecting against sunlight-induced tumors is evidenced in Xeroderma Pigmentosum Variant (XP-V) patients, who carry mutations in this protein and present increased frequency of skin cancer. XPV cellular phenotypes may be aggravated if proteins of DNA damage response (DDR) pathway are blocked, as widely demonstrated by experiments with UVC light and caffeine. However, little is known about the participation of DDR in XP-V cells exposed to UVA light, the wavelengths patients are mostly exposed. Here, we demonstrate the participation of ATR kinase in protecting XP-V cells after receiving low UVA doses using a specific inhibitor, with a remarkable increase in sensitivity and cH2AX signaling. Corroborating ATR participation in UVA-DDR, a significant increase in Chk1 protein phosphorylation, as well as S-phase cell cycle arrest, is also observed. Moreover, the participation of oxidative stress is supported by the antioxidant action of N-acetylcysteine (NAC), which significantly protects XP-V cells from UVA light, even in the presence of the ATR inhibitor. These findings indicate that the ATR/Chk1 pathway is activated to control UVA-induced oxidatively generated DNA damage and emphasizes the role of ATR kinase as a mediator of genomic stability in pol eta defective cells

    Lycopene mitigates pulmonary emphysema induced by cigarette smoke in a murine model.

    No full text
    Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease characterized by a non-fully reversible airflow limitation comprising chronic bronchitis and pulmonary emphysema both being induced by cigarette smoke (CS) exposure. Lycopene has shown antioxidant and anti-inflammatory properties that can prevent acute lung inflammation and emphysema. We hypothesized that administration with lycopene would repair lung damage in emphysema caused by CS exposure. Mice were administered with two different doses of lycopene (25 or 50 mg/kg/day, diluted in sunflower oil by orogastric gavage) and then exposed to 60 days of CS or not (CG). Lycopene promoted a reduction in the number of total leukocytes and it improved pulmonary emphysema. Lycopene was able to minimize redox processes by decreasing lipid peroxidation and DNA damage, and by having an increase in the activities of SOD, CAT and GSH content. Furthermore, it decreased levels of TNF-?, IFN-? and IL-10. In addition, it was able to decrease MPO activity and nitrite content. In conclusion, our data elucidated the role of lycopene as an antioxidant and anti-inflammatory agent in mice exposed to CS

    Antiproliferative and toxicogenomic effects of resveratrol in bladder cancer cells with different TP53 status.

    No full text
    The antitumor activity of resveratrol, a polyphenolic compound found mainly in grapes, has been studied in several types of cancer. In bladder cancer, its antiproliferative effects have already been demonstrated; however, its mechanism of action is not completely understood. The aim of this study was to evaluate resveratrol antitumor activity (12.5, 25, 50, 100, 150, 200, and 250 ?M) and its possible mechanisms of action in bladder tumor cells with different TP53 gene status (RT4, grade 1, TP53 wild type; 5637-grade 2 and T24-grade 3, TP53 mutated). Cell proliferation, clonogenic survival, morphological changes, cell cycle progression, apoptosis rates, genotoxicity, global methylation, immunocytochemistry for p53 and PCNA and relative expression profiles of the AKT, mTOR, RASSF1A, HOXB3, SRC, PLK1, and DNMT1 were evaluated. Resveratrol decreased cell proliferation and induced DNA damage in all cell lines. Regarding the long-term effects, resveratrol reduced the number of colonies in all cell lines; however, TP53 wild type cells were more resistant. Increased rates of apoptosis were found in the TP53 wild type cells and this was accompanied by AKT, mTOR, and SRC downregulation. In addition, the resveratrol antiproliferative effects in wild type TP53 cells were accompanied by modulation of the DNMT1 gene. In the TP53 mutated cells, cell cycle arrest at S phase with PLK1 downregulation was observed. Additionally, there was modulation of the HOXB3/RASSF1A pathway and nuclear PCNA reduction in the highest-grade cells. In conclusion, resveratrol has antiproliferative activity in bladder tumor cells; however, the mechanisms of action are dependent on TP53 status

    Antiproliferative and toxicogenomic effects of resveratrol in bladder cancer cells with different TP53

    No full text
    The antitumor activity of resveratrol, a polyphenolic compound found mainly in grapes, has been studied in several types of cancer. In bladder cancer, its antiproliferative effects have already been demonstrated; however, its mechanism of action is not completely understood. The aim of this study was to evaluate resveratrol antitumor activity (12.5, 25, 50, 100, 150, 200, and 250 ?M) and its possible mechanisms of action in bladder tumor cells with different TP53 gene status (RT4, grade 1, TP53 wild type; 5637-grade 2 and T24-grade 3, TP53 mutated). Cell proliferation, clonogenic survival, morphological changes, cell cycle progression, apoptosis rates, genotoxicity, global methylation, immunocytochemistry for p53 and PCNA and relative expression profiles of the AKT, mTOR, RASSF1A, HOXB3, SRC, PLK1, and DNMT1 were evaluated. Resveratrol decreased cell proliferation and induced DNA damage in all cell lines. Regarding the long-term effects, resveratrol reduced the number of colonies in all cell lines; however, TP53 wild type cells were more resistant. Increased rates of apoptosis were found in the TP53 wild type cells and this was accompanied by AKT, mTOR, and SRC downregulation. In addition, the resveratrol antiproliferative effects in wild type TP53 cells were accompanied by modulation of the DNMT1 gene. In the TP53 mutated cells, cell cycle arrest at S phase with PLK1 downregulation was observed. Additionally, there was modulation of the HOXB3/RASSF1A pathway and nuclear PCNA reduction in the highest-grade cells. In conclusion, resveratrol has antiproliferative activity in bladder tumor cells; however, the mechanisms of action are dependent on TP53 status

    XPD/ERCC2 mutations interfere in cellular responses to oxidative stress.

    No full text
    Nucleotide excision repair (NER) is a conserved, flexible mechanism responsible for the removal of bulky, helix-distorting DNA lesions, like ultraviolet damage or cisplatin adducts, but its role in the repair of lesions generated by oxidative stress is still not clear. The helicase XPD/ERCC2, one of the two helicases of the transcription complex IIH, together with XPB, participates both in NER and in RNA pol II-driven transcription. In this work, we investigated the responses of distinct XPDmutated cell lines to the oxidative stress generated by photoactivated methylene blue (MB) and KBrO3 treatments. The studied cells are derived from patients with XPD mutations but expressing different clinical phenotypes, including xeroderma pigmentosum (XP), XP and Cockayne syndrome (XP-D/CS) and trichothiodystrophy (TTD). We show by different approaches that all XPD-mutated cell lines tested were sensitive to oxidative stress, with those from TTD patients being the most sensitive. Host cell reactivation (HCR) assays showed that XP-D/CS and TTD cells have severely impaired repair capacity of oxidised lesions in plasmid DNA, and alkaline comet assays demonstrated the induction of significantly higher amounts of DNA strand breaks after treatment with photoactivated MB in these cells compared to wild-type cells. All XPD-mutated cells presented strong S/G2 arrest and persistent ?-H2AX staining after photoactivated MB treatment. Taken together, these results indicate that XPD participates in the repair of lesions induced by the redox process, and that XPD mutations lead to differences in the response to oxidatively induced damage
    corecore