3 research outputs found
eSPC: An online data-analysis platform for molecular biophysics
All biological processes rely on the formation of protein–ligand, protein–peptide and protein–protein complexes. Studying the affinity, kinetics and thermodynamics of binding between these pairs is critical for understanding basic cellular mechanisms. Many different technologies have been designed for probing interactions between biomolecules, each based on measuring different signals (fluorescence, heat, thermophoresis, scattering and interference, among others). Evaluation of the data from binding experiments and their fitting is an essential step towards the quantification of binding affinities. Here, user-friendly online tools to analyze biophysical data from steady-state fluorescence spectroscopy, microscale thermophoresis and differential scanning fluorimetry experiments are presented. The modules of the data-analysis platform (https://spc.embl-hamburg.de/) contain classical thermodynamic models and clear user guidelines for the determination of equilibrium dissociation constants (Kd) and thermal unfolding parameters such as melting temperatures (Tm).Fil: Burastero, Osvaldo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂmica BiolĂłgica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂmica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂmica BiolĂłgica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Niebling, Stephan. Centre For Structural Systems Biology; Alemania. European Molecular Biology Laboratory Hamburg; AlemaniaFil: Defelipe, Lucas Alfredo. Centre For Structural Systems Biology; Alemania. European Molecular Biology Laboratory Hamburg; Alemania. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: GĂĽnther, Christian. Centre For Structural Systems Biology; Alemania. European Molecular Biology Laboratory Hamburg; AlemaniaFil: Struve, Angelica. Centre For Structural Systems Biology; Alemania. European Molecular Biology Laboratory Hamburg; AlemaniaFil: Garcia Alai, Maria M.. Centre For Structural Systems Biology; Alemania. European Molecular Biology Laboratory Hamburg; Alemani
Cyclohexyl-α maltoside as a highly efficient tool for membrane protein studies
Membrane proteins (MPs) constitute a large fraction of the proteome, but exhibit physicochemical characteristics that impose challenges for successful sample production crucial for subsequent biophysical studies. In particular, MPs have to be extracted from the membranes in a stable form. Reconstitution into detergent micelles represents the most common procedure in recovering MPs for subsequent analysis. n-dodecyl-β-D-maltoside (DDM) remains one of the most popular conventional detergents used in production of MPs. Here we characterize the novel DDM analogue 4-trans-(4-trans-propylcyclohexyl)-cyclohexyl α-maltoside (t-PCCαM), possessing a substantially lower critical micelle concentration (CMC) than the parental compound that represents an attractive feature when handling MPs. Using three different types of MPs of human and prokaryotic origin, i.e., a channel, a primary and a secondary active transporter, expressed in yeast and bacterial host systems, respectively, we investigate the performance of t-PCCαM in solubilization and affinity purification together with its capacity to preserve native fold and activity. Strikingly, t-PCCαM displays favorable behavior in extracting and stabilizing the three selected targets. Importantly, t-PCCαM promoted extraction of properly folded protein, enhanced thermostability and provided negatively-stained electron microscopy samples of promising quality. All-in-all, t-PCCαM emerges as competitive surfactant applicable to a broad portfolio of challenging MPs for downstream structure-function analysis
Antiviral activity of natural phenolic compounds in complex at an allosteric site of SARS-CoV-2 papain-like protease
SARS-CoV-2 papain-like protease (PLpro) covers multiple functions. Beside the cysteine-protease activity, facilitating cleavage of the viral polypeptide chain, PLpro has the additional and vital function of removing ubiquitin and ISG15 (Interferon-stimulated gene 15) from host-cell proteins to support coronaviruses in evading the host’s innate immune responses. We identified three phenolic compounds bound to PLpro, preventing essential molecular interactions to ISG15 by screening a natural compound library. The compounds identified by X-ray screening and complexed to PLpro demonstrate clear inhibition of PLpro in a deISGylation activity assay. Two compounds exhibit distinct antiviral activity in Vero cell line assays and one inhibited a cytopathic effect in non-cytotoxic concentration ranges. In the context of increasing PLpro mutations in the evolving new variants of SARS-CoV-2, the natural compounds we identified may also reinstate the antiviral immune response processes of the host that are down-regulated in COVID-19 infections