13 research outputs found

    Nucleotide polymorphisms of the human papillomavirus 16 E1 gene

    No full text
    The E1 ORF is one of the most conserved regions in the human papillomavirus (HPV) genome. The complete E1 gene of the HPV16 genome was amplified with four overlapping primer sets in 16 high-grade (CIN II, III) and 13 low-grade cervical (CIN I) intraepithelial neoplasias as well as in one cervical cancer case. Sequence analysis of the E6 and E7 genes was also carried out in the same cervical samples in order to confirm the association between nucleotide sequence variations in the HPV16 E1 ORF and HPV16 variant lineages. Analysis of the E1 ORF revealed 27 nucleotide changes, and these changes were correlated with those found in HPV16 Asian American and African type II variants. Of these nucleotide variations, A1668G, G2073A, T2169C, T2189C, A2453T, C2454T, A2587T and G2650A were identified only in high-grade dysplasia cases. A phylogenetic tree of the E1 ORF and nucleotide sequence analysis of the E1, E6 and E7 genes revealed that intratypic nucleotide sequence polymorphisms located in the E1 ORF can be used to identify the major phylogenetic branch to which a HPV16 genome belongs. Moreover, amplification of the E1 ORF revealed a disruption between nucleotides 878 and 1523 in five high- and two low-grade cervical cases, indicating that integration of HPV DNA occurs at an early stage of viral infection

    Multiplex PCR assay for the rapid identification of human papillomavirus genotypes 16, 18, 45, 35, 66, 33, 51, 58, and 31 in clinical samples

    No full text
    The causal association between persistent human papillomavirus (HPV) infection and cervical cancer has lead to the development of a variety of molecular assays for HPV detection. The present study focused on the development of a simple, sensitive and cost-effective HPV genotyping method based on multiplex PCR methodology that could be easily performed in small laboratories. Three multiplex PCR assays were developed to identify the HPV genotypes 16, 18, 45, 35, 66, 33, 51, 58, and 31 together with an internal control. The method was established by designing nine type-specific primer sets that target conserved regions of the L1 gene. The assay was applied using HPV-positive cervical specimens, and cloning and sequencing of all of the amplicons that were generated were performed to examine the specificity of the newly designed primers. Moreover, an experimental cutoff value was determined through reconstitution experiments using HPV DNA plasmids. Amplicons of expected size were obtained, while cloning and sequencing of PCR products confirmed the genomic specificity of the amplicons. The sensitivity of this method was determined to be 10 copies of each individual HPV genotype per test. Multiple and single HPV infections were documented in 42.2 % and 57.8 % of cervical specimens, respectively. The most prevalent HPV genotype was HPV16, followed by HPV18, HPV66 and HPV51. The present multiplex PCR assay is a simple method with high specificity and sensitivity that can be applied in clinical or epidemiological analyses for rapid identification of the most clinically important HPV genotypes present in cervical intraepithelial neoplasias
    corecore