17 research outputs found
The Gini index and the consistent measurement of inequality among the poor
In several economic fields, such as those related to health, education or poverty, the individuals' characteristics are measured by bounded variables. Accordingly, these characteristics may be indistinctly represented by achievements or shortfalls. A diculty arises when inequality needs to be assessed. One may focus either on achievements or on shortfalls but the respective inequality rankings may lead to contradictory results. Specifically, this paper concentrates on the poverty measure proposed by Sen. According to this measure the inequality among the poor is captured by the Gini index. However, the rankings obtained by the Gini index applied to either the achievements or the shortfalls do not coincide in general. To overcome this drawback, we show that an OWA operator is underlying in the definition of the Sen measure. The dual decomposition of the OWA operators into a self-dual core and anti-self-dual remainder allows us to propose an inequality component which measures consistently the achievement and shortfall inequality among the poor
Characterizing best-worst voting systems in the scoring context
An increasing body of theoretical and empirical work on discrete choice considers a choice design in which a person is asked to select both the best and the worst alternative in an available set of alternatives, in contrast to more traditional tasks, such as where the person is asked to: select the best alternative; select the worst alternative; rank the alternatives. Here we consider voting systems motivated by such âbestâworstâ choice; characterize a class of âbestâworstâ voting systems in terms of a set of axioms in the context of scoring rules; and discuss briefly possible extensions to approvalâdisapproval systems.
Thermoresponsive gold polymer nanohybrids with a tunable cross-linked meo 2 ma polymer shell
Gold nanoparticles (AuNPs) are functionalized with a thermoresponsive polymer shell of a cross-linked poly(2-(2-methoxyethoxy)ethyl methacrylate) (P(MEO 2 MA)). To provide a covalent attachment of the polymer to the NP surface, AuNPs are fi rst modifi ed using butanoic acid to develop the encapsulation with the biocompatible thermoresponsive polymer formed by free-radical precipitation polymerization. Both the MEO 2 MA concentration and the shell cross-linking density can be varied and, in turn, the thickness and the shells' free volume can be fi ne-tuned. By downscaling the size of the polymeric shell, the lower critical solution temperature (LCST) is decreased. The LCST in the nanohybrids changes from 19.1 to 25.6 °C when increasing the MEO 2 MA content; it reaches almost 26 °C for P(MEO 2 MA) (bulk). The maximum decrease in the volume of the nanohybrids is around 40%, resulting in a modifi cation of the light scattering properties of the system and causing a change in the turbidity of the gel network. The sizes of the nanohybrids are characterized using both transmission electron microscopy and dynamic light scattering measurements. Optical properties of the colloidal systems are determined using the derived count rate measurements as an alternative to absorbance or transmittance measurements, confi rming the colloidal stability of the nanohybrid systems.Peer Reviewe
Numerical representability of fuzzy total preorders
[EN] We introduce the concept of a fyzzy total preorder. Then we analyze its numerical representability through a real-valued order-preserving function defined for each alpha-cutThis work has been supported by the research projects MTM2009-12872-C02-02 and MTM2010-17844 (Spain).Agud Albesa, L.; Catalan, R.; Diaz, S.; Indurain, E.; Montes, S. (2012). Numerical representability of fuzzy total preorders. International Journal of Computational Intelligence Systems. 5(6):996-1009. https://doi.org/10.1080/18756891.2012.747653S996100956Montes, I., DĂaz, S., & Montes, S. (2010). On complete fuzzy preorders and their characterizations. Soft Computing, 15(10), 1999-2011. doi:10.1007/s00500-010-0630-yDĂaz, S., De Baets, B., & Montes, S. (2010). On the Ferrers property of valued interval orders. TOP, 19(2), 421-447. doi:10.1007/s11750-010-0134-zDĂaz, S., IndurĂĄin, E., De Baets, B., & Montes, S. (2011). Fuzzy semi-orders: The case of t-norms without zero divisors. Fuzzy Sets and Systems, 184(1), 52-67. doi:10.1016/j.fss.2011.01.006INDURĂIN, E., MARTINETTI, D., MONTES, S., DĂAZ, S., & ABRĂSQUETA, F. J. (2011). ON THE PRESERVATION OF SEMIORDERS FROM THE FUZZY TO THE CRISP SETTING. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 19(06), 899-920. doi:10.1142/s0218488511007398Roubens, M., & Vincke, P. (1985). Preference Modelling. Lecture Notes in Economics and Mathematical Systems. doi:10.1007/978-3-642-46550-5Fodor, J., & Roubens, M. (1994). Fuzzy Preference Modelling and Multicriteria Decision Support. doi:10.1007/978-94-017-1648-2Klement, E. P., Mesiar, R., & Pap, E. (2000). Triangular Norms. Trends in Logic. doi:10.1007/978-94-015-9540-7Van de Walle, B., De Baets, B., & Kerre, E. (1998). Annals of Operations Research, 80, 105-136. doi:10.1023/a:1018903628661Nurmi, H. (1981). Approaches to collective decision making with fuzzy preference relations. Fuzzy Sets and Systems, 6(3), 249-259. doi:10.1016/0165-0114(81)90003-8Dutta, B. (1987). Fuzzy preferences and social choice. Mathematical Social Sciences, 13(3), 215-229. doi:10.1016/0165-4896(87)90030-8Barrett, C. R., Pattanaik, P. K., & Salles, M. (1992). Rationality and aggregation of preferences in an ordinally fuzzy framework. Fuzzy Sets and Systems, 49(1), 9-13. doi:10.1016/0165-0114(92)90105-dBillot, A. (1995). An existence theorem for fuzzy utility functions: A new elementary proof. Fuzzy Sets and Systems, 74(2), 271-276. doi:10.1016/0165-0114(95)00114-zRichardson, G. (1998). The structure of fuzzy preferences: Social choice implications. Social Choice and Welfare, 15(3), 359-369. doi:10.1007/s003550050111GarcĂa-Lapresta, J. L., & Llamazares, B. (2000). Aggregation of fuzzy preferences: Some rules of the mean. Social Choice and Welfare, 17(4), 673-690. doi:10.1007/s003550000048Ovchinnikov, S. (2002). Numerical representation of transitive fuzzy relations. Fuzzy Sets and Systems, 126(2), 225-232. doi:10.1016/s0165-0114(01)00027-6Bodenhofer, U., De Baets, B., & Fodor, J. (2007). A compendium of fuzzy weak orders: Representations and constructions. Fuzzy Sets and Systems, 158(8), 811-829. doi:10.1016/j.fss.2006.10.005Fono, L. A., & Andjiga, N. G. (2006). Utility function of fuzzy preferences on a countable set under max-*-transitivity. Social Choice and Welfare, 28(4), 667-683. doi:10.1007/s00355-006-0190-3Fono, L. A., & Salles, M. (2011). Continuity of utility functions representing fuzzy preferences. Social Choice and Welfare, 37(4), 669-682. doi:10.1007/s00355-011-0571-0CAMPIĂN, M. J., CANDEAL, J. C., CATALĂN, R. G., DE MIGUEL, J. R., INDURĂIN, E., & MOLINA, J. A. (2011). AGGREGATION OF PREFERENCES IN CRISP AND FUZZY SETTINGS: FUNCTIONAL EQUATIONS LEADING TO POSSIBILITY RESULTS. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 19(01), 89-114. doi:10.1142/s0218488511006903Bosi, G., Candeal, J. C., IndurĂĄin, E., Oloriz, E., & Zudaire, M. (2001). Order, 18(2), 171-190. doi:10.1023/a:1011974420295CampiĂłn, M. J., Candeal, J. C., & IndurĂĄin, E. (2006). Representability of binary relations through fuzzy numbers. Fuzzy Sets and Systems, 157(1), 1-19. doi:10.1016/j.fss.2005.06.018Scott, D., & Suppes, P. (1958). Foundational aspects of theories of measurement. Journal of Symbolic Logic, 23(2), 113-128. doi:10.2307/2964389Bridges, D. S., & Mehta, G. B. (1995). Representations of Preferences Orderings. Lecture Notes in Economics and Mathematical Systems. doi:10.1007/978-3-642-51495-1Candeal, J. C., & Indurïżœin, E. (1999). Lexicographic behaviour of chains. Archiv der Mathematik, 72(2), 145-152. doi:10.1007/s000130050315Candeal, J. C., De Miguel, J. R., IndurĂĄin, E., & Mehta, G. B. (2001). Utility and entropy. Economic Theory, 17(1), 233-238. doi:10.1007/pl00004100Cantor, G. (1895). BeitrĂ€ge zur BegrĂŒndung der transfiniten Mengenlehre. Mathematische Annalen, 46(4), 481-512. doi:10.1007/bf02124929Cantor, G. (1897). Beitrïżœge zur Begrïżœndung der transfiniten Mengenlehre. Mathematische Annalen, 49(2), 207-246. doi:10.1007/bf01444205Debreu, G. (1964). Continuity Properties of Paretian Utility. International Economic Review, 5(3), 285. doi:10.2307/2525513Candeal-Haro, J. C., & Indur{ĂĄin Eraso, E. (1992). Utility functions on partially ordered topological groups. Proceedings of the American Mathematical Society, 115(3), 765-765. doi:10.1090/s0002-9939-1992-1116255-xCandeal-Haro, J. C., & IndurĂĄin-Eraso, E. (1993). Utility representations from the concept of measure. Mathematical Social Sciences, 26(1), 51-62. doi:10.1016/0165-4896(93)90011-7Candeal-Haro, J. C., & IndurĂĄin-Eraso, E. (1994). Utility representations from the concept of measure: A corrigendum. Mathematical Social Sciences, 28(1), 67-69. doi:10.1016/0165-4896(93)00747-