63 research outputs found

    Multidrug resistant Acinetobacter baumannii: a descriptive study in a city hospital

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multidrug resistant <it>Acinetobacter baumannii</it>, (MRAB) is an important cause of hospital acquired infection. The purpose of this study is to determine the risk factors for MRAB in a city hospital patient population.</p> <p>Methods</p> <p>This study is a retrospective review of a city hospital epidemiology data base and includes 247 isolates of Acinetobacter baumannii (AB) from 164 patients. Multidrug resistant <it>Acinetobacter baumannii </it>was defined as resistance to more than three classes of antibiotics. Using the non-MRAB isolates as the control group, the risk factors for the acquisition of MRAB were determined.</p> <p>Results</p> <p>Of the 247 AB isolates 72% (177) were multidrug resistant. Fifty-eight percent (143/247) of isolates were highly resistant (resistant to imipenem, amikacin, and ampicillin-sulbactam). Of the 37 patients who died with Acinetobacter colonization/infection, 32 (86%) patients had the organism recovered from the respiratory tract. The factors which were found to be significantly associated (p ≤ 0.05) with multidrug resistance include the recovery of AB from multiple sites, mechanical ventilation, previous antibiotic exposure, and the presence of neurologic impairment. Multidrug resistant Acinetobacter was associated with significant mortality when compared with sensitive strains (p ≤ 0.01). When surgical patients (N = 75) were considered separately, mechanical ventilation and multiple isolates remained the factors significantly associated with the development of multidrug resistant Acinetobacter. Among surgical patients 46/75 (61%) grew a multidrug resistant strain of AB and 37/75 (40%) were resistant to all commonly used antibiotics including aminoglycosides, cephalosporins, carbepenems, extended spectrum penicillins, and quinolones. Thirty-five percent of the surgical patients had AB cultured from multiple sites and 57% of the Acinetobacter isolates were associated with a co-infecting organism, usually a Staphylococcus or Pseudomonas. As in medical patients, the isolation of Acinetobacter from multiple sites and the need for mechanical ventilation were significantly associated with the development of MRAB.</p> <p>Conclusions</p> <p>The factors significantly associated with MRAB in both the general patient population and surgical patients were mechanical ventilation and the recovery of Acinetobacter from multiple anatomic sites. Previous antibiotic use and neurologic impairment were significant factors in medical patients. Colonization or infection with MRAB is associated with increased mortality.</p

    YES1 drives lung cancer growth and progression and predicts sensitivity to dasatinib

    Get PDF
    Rationale: The characterization of new genetic alterations is essential to assign effective personalized therapies in non–small cell lung cancer (NSCLC). Furthermore, finding stratification biomarkers is essential for successful personalized therapies. Molecular alterations of YES1, a member of the SRC (proto-oncogene tyrosine-protein kinase Src) family kinases (SFKs), can be found in a significant subset of patients with lung cancer. Objectives: To evaluate YES1 (v-YES-1 Yamaguchi sarcoma viral oncogene homolog 1) genetic alteration as a therapeutic target and predictive biomarker of response to dasatinib in NSCLC. Methods: Functional significance was evaluated by in vivo models of NSCLC and metastasis and patient-derived xenografts. The efficacy of pharmacological and genetic (CRISPR [clustered regularly interspaced short palindromic repeats]/Cas9 [CRISPR-associated protein 9]) YES1 abrogation was also evaluated. In vitro functional assays for signaling, survival, and invasion were also performed. The association between YES1 alterations and prognosis was evaluated in clinical samples. Measurements and Main Results: We demonstrated that YES1 is essential for NSCLC carcinogenesis. Furthermore, YES1 overexpression induced metastatic spread in preclinical in vivo models. YES1 genetic depletion by CRISPR/Cas9 technology significantly reduced tumor growth and metastasis. YES1 effects were mainly driven by mTOR (mammalian target of rapamycin) signaling. Interestingly, cell lines and patient-derived xenograft models with YES1 gene amplifications presented a high sensitivity to dasatinib, an SFK inhibitor, pointing out YES1 status as a stratification biomarker for dasatinib response. Moreover, high YES1 protein expression was an independent predictor for poor prognosis in patients with lung cancer. Conclusions: YES1 is a promising therapeutic target in lung cancer. Our results provide support for the clinical evaluation of dasatinib treatment in a selected subset of patients using YES1 status as predictive biomarker for therapy

    Incidence and outcome of invasive candidiasis in intensive care units (ICUs) in Europe: results of the EUCANDICU project

    Get PDF
    BACKGROUND: The objective of this study was to assess the cumulative incidence of invasive candidiasis (IC) in intensive care units (ICUs) in Europe. METHODS: A multinational, multicenter, retrospective study was conducted in 23 ICUs in 9 European countries, representing the first phase of the candidemia/intra-abdominal candidiasis in European ICU project (EUCANDICU). RESULTS: During the study period, 570 episodes of ICU-acquired IC were observed, with a cumulative incidence of 7.07 episodes per 1000 ICU admissions, with important between-center variability. Separated, non-mutually exclusive cumulative incidences of candidemia and IAC were 5.52 and 1.84 episodes per 1000 ICU admissions, respectively. Crude 30-day mortality was 42%. Age (odds ratio [OR] 1.04 per year, 95% CI 1.02-1.06, p&nbsp;&lt; 0.001), severe hepatic failure (OR 3.25, 95% 1.31-8.08, p 0.011), SOFA score at the onset of IC (OR 1.11 per point, 95% CI 1.04-1.17, p 0.001), and septic shock (OR 2.12, 95% CI 1.24-3.63, p 0.006) were associated with increased 30-day mortality in a secondary, exploratory analysis. CONCLUSIONS: The cumulative incidence of IC in 23 European ICUs was 7.07 episodes per 1000 ICU admissions. Future in-depth analyses will allow explaining part of the observed between-center variability, with the ultimate aim of helping to improve local infection control and antifungal stewardship projects and interventions

    First comprehensive contribution to medical ethnobotany of Western Pyrenees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An ethnobotanical and medical study was carried out in the Navarre Pyrenees, an area known both for its high biological diversity and its cultural significance.</p> <p>As well as the compilation of an ethnopharmacological catalogue, a quantitative ethnobotanical comparison has been carried out in relation to the outcomes from other studies about the Pyrenees. A review of all drugs used in the area has also been carried out, through a study of the monographs published by the institutions and organizations responsible for the safety and efficacy of medicinal plants (WHO, ESCOP, and the E Commission of the German Department of Health) in order to ascertain the extent to which the Navarre Pyrenees ethnopharmacology has been officially evaluated.</p> <p>Methods</p> <p>Fieldwork was carried out over two years, from November 2004 to December 2006. During that time we interviewed 88 local people in 40 villages. Information was collected using semi-structured ethnobotanical interviews and the data was analyzed using quantitave indexes: Ethnobotonicity Index, Shannon-Wiener's Diversity, Equitability and The Informant Consensus Factor. The official review has been performed using the official monographs published by the WHO, ESCOP and the E Commission of the German Department of Health.</p> <p>Results</p> <p>The ethnobotanical and medical catalogue of the Navarre Pyrenees Area comprises 92 species, of which 39 have been mentioned by at least three interviewees. The quantitative ethnobotany results show lower values than those found in other studies about the Pyrenees; and 57.6% of the Pyrenees medical ethnobotany described does not figure in documents published by the above mentioned institutions.</p> <p>Conclusion</p> <p>The results show a reduction in the ethnobotanical and medical knowledge in the area of study, when compared to other studies carried out in the Pyrenees. Nevertheless, the use of several species that may be regarded as possible sources for pharmacological studies is reported here such as the bark of <it>Sambucus nigra</it>, the roots of <it>Fragaria vesca</it>, or the leaves of <it>Scrophularia nodosa</it>. These species are not currently approved by the WHO, ESCOP and the E Commission of the German Department of Health, institutions that, apart from encouraging the greater use of plants for medicinal purposes, may help in the design of development plans for these rural areas by validating their traditional medicine.</p

    Analyzing factors that influence the folk use and phytonomy of 18 medicinal plants in Navarra

    Get PDF
    BACKGROUND: This article analyzes whether the distribution or area of use of 18 medicinal plants is influenced by ecological and cultural factors which might account for their traditional use and/or phytonymy in Navarra. This discussion may be helpful for comparative studies, touching as it does on other ethnopharmacological issues: a) which cultural and ecological factors affect the selection of medicinal plants; b) substitutions of medicinal plants in popular medicine; c) the relation between local nomenclature and uses. To analyze these questions, this paper presents an example of a species used for digestive disorders (tea and camomile: Jasonia glutinosa, J. tuberosa, Sideritis hyssopifolia, Bidens aurea, Chamaemelum nobile, Santolina chamaecyparissus...), high blood pressure (Rhamnus alaternus, Olea europaea...) or skin diseases (Hylotelephium maximum, H. telephium, Anagallis arvensis, A. foemina). METHODS: Fieldwork began on January 2004 and continued until December 2006. During that time we interviewed 505 informants in 218 locations in Navarra. Information was collected using semi-structured ethnobotanical interviews, and we subsequently made maps using Arc-View 8.0 program to determine the area of use of each taxon. Each map was then compared with the bioclimatic and linguistic map of Navarra, using the soil and ethnographic data for the region, and with other ethnobotanical and ethnopharmacological studies carried out in Europe. RESULTS: The results clearly show that ecological and cultural factors influence the selection of medicinal plants in this region. Climate and substrate are the most important ecological factors that influence the distribution and abundance of plants, which are the biological factors that affect medicinal plant selection. CONCLUSION: The study of edaphological and climatological factors, on the one hand, and culture, on the other, can help us to understand why a plant is replaced by another one for the same purposes, either in the same or in a different area. In many cases, the cultural factor means that the use of a species is more widespread than its ecological distribution. This may also explain the presence of synonyms and polysemies which are useful for discussing ethnopharmacological data

    Atlas de las praderas marinas de España

    Get PDF
    Knowledge of the distribution and extent of seagrass habitats is currently the basis of management and conservation policies of the coastal zones in most European countries. This basic information is being requested through European directives for the establishment of monitoring programmes and the implementation of specific actions to preserve the marine environment. In addition, this information is crucial for the quantification of the ecological importance usually attributed to seagrass habitats due to, for instance, their involvement in biogeochemical cycles, marine biodiversity and quality of coastal waters or global carbon budgets. The seagrass atlas of Spain represents a huge collective effort performed by 84 authors across 30 Spanish institutions largely involved in the scientific research, management and conservation of seagrass habitats during the last three decades. They have contributed to the availability of the most precise and realistic seagrass maps for each region of the Spanish coast which have been integrated in a GIS to obtain the distribution and area of each seagrass species. Most of this information has independently originated at a regional level by regional governments, universities and public research organisations, which explain the elevated heterogeneity in criteria, scales, methods and objectives of the available information. On this basis, seagrass habitats in Spain occupy a total surface of 1,541,63 km2, 89% of which is concentrated in the Mediterranean regions; the rest is present in sheltered estuarine areas of the Atlantic peninsular regions and in the open coastal waters of the Canary Islands, which represents 50% of the Atlantic meadows. Of this surface, 71.5% corresponds to Posidonia oceanica, 19.5% to Cymodocea nodosa, 3.1% to Zostera noltii (=Nanozostera noltii), 0.3% to Zostera marina and 1.2% to Halophila decipiens. Species distribution maps are presented (including Ruppia spp.), together with maps of the main impacts and pressures that has affected or threatened their conservation status, as well as the management tools established for their protection and conservation. Despite this considerable effort, and the fact that Spain has mapped wide shelf areas, the information available is still incomplete and with weak precision in many regions, which will require an investment of major effort in the near future to complete the whole picture and respond to demands of EU directives.Versión del edito

    Atlas de las praderas marinas de España

    Get PDF
    Knowledge of the distribution and extent of seagrass habitats is currently the basis of management and conservation policies of the coastal zones in most European countries. This basic information is being requested through European directives for the establishment of monitoring programmes and the implementation of specific actions to preserve the marine environment. In addition, this information is crucial for the quantification of the ecological importance usually attributed to seagrass habitats due to, for instance, their involvement in biogeochemical cycles, marine biodiversity and quality of coastal waters or global carbon budgets. The seagrass atlas of Spain represents a huge collective effort performed by 84 authors across 30 Spanish institutions largely involved in the scientific research, management and conservation of seagrass habitats during the last three decades. They have contributed to the availability of the most precise and realistic seagrass maps for each region of the Spanish coast which have been integrated in a GIS to obtain the distribution and area of each seagrass species. Most of this information has independently originated at a regional level by regional governments, universities and public research organisations, which explain the elevated heterogeneity in criteria, scales, methods and objectives of the available information. On this basis, seagrass habitats in Spain occupy a total surface of 1,541,63 km2, 89% of which is concentrated in the Mediterranean regions; the rest is present in sheltered estuarine areas of the Atlantic peninsular regions and in the open coastal waters of the Canary Islands, which represents 50% of the Atlantic meadows. Of this surface, 71.5% corresponds to Posidonia oceanica, 19.5% to Cymodocea nodosa, 3.1% to Zostera noltii (=Nanozostera noltii), 0.3% to Zostera marina and 1.2% to Halophila decipiens. Species distribution maps are presented (including Ruppia spp.), together with maps of the main impacts and pressures that has affected or threatened their conservation status, as well as the management tools established for their protection and conservation. Despite this considerable effort, and the fact that Spain has mapped wide shelf areas, the information available is still incomplete and with weak precision in many regions, which will require an investment of major effort in the near future to complete the whole picture and respond to demands of EU directives

    The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients

    Get PDF
    Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation

    On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.

    Get PDF
    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life
    corecore