2 research outputs found

    The Effect of Endogenous Expression of HIV-1 gp120 on Glutamate Metabolism in Human Astrocytes

    Full text link
    Human immunodeficiency virus (HIV) infection is a global epidemic that targets the immune system. HIV infects white blood cells and spreads throughout the entire body via blood stream and makes its way to the brain. HIV infection in the brain may lead to HIV associated neurocognitive disorders (HAND). To be able to address this problem, we have to better understand how HIV infection damages neurons. We hypothesize that gp120 causes neurotoxicity in the cells by inhibiting the conversion of glutamate to glutamine by glutaminase. As a result, glutamate concentrations will build up both inside and outside the cell causing excitatory neurotoxicity. To better understand this process, we transfected human astrocytes (U87MG cells) with mock (control), an empty vector (control), and with gp120 plasmid. Seventy-two hours post transfection, the cells were collected and run through a series of tests including SDS-PAGE/Western Blot and qRT-PCR to assess protein and mRNA levels of glutaminase and gp120. We expect production of gp120 by astrocytes to lead to a decrease in expression of glutaminase. This would inhibit the process of converting glutamate to glutamine and explain how excess of glutamate accumulates inside and outside of the cell causing neurotoxicity and cell death. In conclusion, we expect to find a direct relationship between gp120 and the glutamate metabolism in human astrocytes. Understanding the effect gp120 has on neurons will help develop more effective treatments to better fight the virus

    Analysis of the V1V2 Region of the SIV Envelope in the Brains of Morphine-Dependent and Control SIV/SHIV-Infected Macaques

    No full text
    Six morphine-dependent and three control macaques were infected with a mixture of SIV/SHIV. Half of the animals in the morphine group developed accelerated disease (rapid progressor) and died within 20 weeks postinfection. The evolution of the envelope gene in the brain of the rapid progressor and morphine-dependent group along with that in the control group was assessed. Six to 10 clones from the brain of each macaque were sequenced and were compared against each other as well as against a challenge virus. Analysis of the sequences revealed that the diversity and divergence of the clones were higher in the control group as compared to the morphine-dependent macaques, although this difference was not statistically significant
    corecore