11,031 research outputs found
Isolated vacua in supersymmetric Yang-Mills theories
An explicit proof of the existence of nontrivial vacua in the pure
supersymmetric Yang-Mills theories with higher orthogonal SO(N), N>=7 or the
G_2 gauge group defined on a 3-torus with periodic boundary conditions is
given. Extra vacuum states are separated by an energy barrier from the
perturbative vacuum A_i=0 and its gauge copies.Comment: 8 pages, no figures, late
A model for conservative chaos constructed from multi-component Bose-Einstein condensates with a trap in 2 dimensions
To show a mechanism leading to the breakdown of a particle picture for the
multi-component Bose-Einstein condensates(BECs) with a harmonic trap in high
dimensions, we investigate the corresponding 2- nonlinear Schr{\"o}dinger
equation (Gross-Pitaevskii equation) with use of a modified variational
principle. A molecule of two identical Gaussian wavepackets has two degrees of
freedom(DFs), the separation of center-of-masses and the wavepacket width.
Without the inter-component interaction(ICI) these DFs show independent regular
oscillations with the degenerate eigen-frequencies. The inclusion of ICI
strongly mixes these DFs, generating a fat mode that breaks a particle picture,
which however can be recovered by introducing a time-periodic ICI with zero
average. In case of the molecule of three wavepackets for a three-component
BEC, the increase of amplitude of ICI yields a transition from regular to
chaotic oscillations in the wavepacket breathing.Comment: 5 pages, 4 figure
A Highly Available Cluster of Web Servers with Increased Storage Capacity
Ponencias de las Decimoséptimas Jornadas de Paralelismo de la Universidad de Castilla-La Mancha celebradas el 18,19 y 20 de septiembre de 2006 en AlbaceteWeb servers scalability has been traditionally solved by improving software elements or increasing hardware resources of the server machine.
Another approach has been the usage of distributed
architectures. In such architectures, usually, file al-
location strategy has been either full replication or full distribution. In previous works we have showed that partial replication offers a good balance between storage capacity and reliability. It offers much higher
storage capacity while reliability may be kept at an equivalent level of that from fully replicated solutions.
In this paper we present the architectural details of Web cluster solutions adapted to partial replication.
We also show that partial replication does not imply a penalty in performance over classical fully replicated architectures. For evaluation purposes we have used a simulation model under the OMNeT++ framework and we use mean service time as a performance comparison metric.Publicad
An extended Agassi model: algebraic structure, phase diagram, and large size limit
The Agassi model is a schematic two-level model that involves pairing and
monopole-monopole interactions. It is, therefore, an extension of the well
known Lipkin-Meshkov-Glick (LMG) model. In this paper we review the algebraic
formulation of an extension of the Agassi model as well as its bosonic
realization through the Schwinger representation. Moreover, a mean-field
approximation for the model is presented and its phase diagram discussed.
Finally, a analysis, with proportional to the degeneracy of each
level, is worked out to obtain the thermodynamic limit of the ground state
energy and some order parameters from the exact Hamiltonian diagonalization for
finite.Comment: Accepted in Physica Scripta. Focus on SSNET 201
Phase diagram of an extended Agassi model
Background: The Agassi model is an extension of the Lipkin-Meshkov-Glick
model that incorporates the pairing interaction. It is a schematic model that
describes the interplay between particle-hole and pair correlations. It was
proposed in the 1960's by D. Agassi as a model to simulate the properties of
the quadrupole plus pairing model.
Purpose: The aim of this work is to extend a previous study by Davis and
Heiss generalizing the Agassi model and analyze in detail the phase diagram of
the model as well as the different regions with coexistence of several phases.
Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov
(HFB) approximation, introducing two variational parameters that play the role
of order parameters. We also compare the HFB calculations with the exact ones.
Results: We obtain the phase diagram of the model and classify the order of
the different quantum phase transitions appearing in the diagram. The phase
diagram presents broad regions where several phases, up to three, coexist.
Moreover, there is also a line and a point where four and five phases are
degenerated, respectively.
Conclusions: The phase diagram of the extended Agassi model presents a rich
variety of phases. Phase coexistence is present in extended areas of the
parameter space. The model could be an important tool for benchmarking novel
many-body approximations.Comment: Accepted for publication in PR
Neutrino mean free paths in spin-polarized neutron Fermi liquids
Neutrino mean free paths in magnetized neutron matter are calculated using
the Hartree-Fock approximation with effective Skyrme and Gogny forces in the
framework of the Landau Fermi Liquid Theory. It is shown that describing
nuclear interaction with Skyrme forces and for magnetic field strengths
, the neutrino mean free paths stay almost unchanged
at intermediate densities but they largely increase at high densities when they
are compared to the field-free case results. However the description with Gogny
forces differs from the previous and mean free paths stay almonst unchanged or
decrease at densities . This different behaviour can be explained
due to the combination of common mild variation of the Landau parameters with
both types of forces and the values of the nucleon effective mass and induced
magnetization of matter under presence of a strong magnetic field as described
with the two parametrizations of the nuclear interaction.Comment: 9 pages, 3 figure
Calorons with non-trivial holonomy on and off the lattice
We discuss recent solutions for SU(2) calorons with non-trivial holonomy at
higher charge, both through analytic means and using cooling, as well as
extensive lattice studies for SU(3).Comment: 12 pages, 16 figures in 34 parts, 4 talks presented at Lattice
2004(topology
Entropy and Entanglement in Quantum Ground States
We consider the relationship between correlations and entanglement in gapped
quantum systems, with application to matrix product state representations. We
prove that there exist gapped one-dimensional local Hamiltonians such that the
entropy is exponentially large in the correlation length, and we present strong
evidence supporting a conjecture that there exist such systems with arbitrarily
large entropy. However, we then show that, under an assumption on the density
of states which is believed to be satisfied by many physical systems such as
the fractional quantum Hall effect, that an efficient matrix product state
representation of the ground state exists in any dimension. Finally, we comment
on the implications for numerical simulation.Comment: 7 pages, no figure
Probing for Instanton Quarks with epsilon-Cooling
We use epsilon-cooling, adjusting at will the order a^2 corrections to the
lattice action, to study the parameter space of instantons in the background of
non-trivial holonomy and to determine the presence and nature of constituents
with fractional topological charge at finite and zero temperature for SU(2). As
an additional tool, zero temperature configurations were generated from those
at finite temperature with well-separated constituents. This is achieved by
"adiabatically" adjusting the anisotropic coupling used to implement finite
temperature on a symmetric lattice. The action and topological charge density,
as well as the Polyakov loop and chiral zero-modes are used to analyse these
configurations. We also show how cooling histories themselves can reveal the
presence of constituents with fractional topological charge. We comment on the
interpretation of recent fermion zero-mode studies for thermalized ensembles at
small temperatures.Comment: 26 pages, 14 figures in 33 part
- âŠ