11 research outputs found

    Graphene Functionalization of Polyrotaxane-Encapsulated PEG-Based PCMs: Fabrication and Applications.

    Get PDF
    Phase change materials (PCMs) have received much attention regarding the thermal regulation of electronic devices. However, the main limitations of using organic PCMs are the low thermal conductivity and leakage during the phase change process. This work aims to improve these limitations to increase the thermal conductivity of the leakage-proof PCM formed by a polyrotaxane that serves as a support material to encapsulate PEG. For this purpose, different contents of graphene nanoplatelets (GNP) are blended. To facilitate its postindustrial production and to meet ecological standards, the synthesis of this PCM is simple and only using water as a solvent. The PCMs can be thermally processed conveniently by a hot press. Furthermore, the PCMs achieve high enthalpy values (132.9–142.9 J g−1) due to the action of GNPs as thermally conductive fillers. The PCMs exhibited an increase of 60–257% in thermal conductivity values with higher GNP content, and show great shape stability and no leakage during phase change. These improvements solve the main problems of organic PCMs, thus making PLR-PEG-GNP-based materials a good candidate for use as thermal energy storage materials in industrial applications as thermoregulators of solid-state disks or realizing the “shaving peaks and filling valleys” effect for thermoelectric generators.pre-print1654 K

    PLA aerogel as a universal support for the typical organic phase change energy storage materials.

    Get PDF
    We first prepared Polylactic acid (PLA) aerogels with high porosity based on a facile and efficient thermal induced phase separation technique. In view of the excellent internal nano structure of PLA aerogel, high porosity and suitable interfacial affinity, it was selected as a support material to encapsulate four common organic phase change materials (PCMs), thereby preparing anti-leakage, shape-stable and sustainable PCMs with ultra-high latent heat (178.9–224.9 J g−1). PLA aerogel encapsulated PCMs perform high enthalpy efficiency (>92 %), which may benefit from the highly internal compatible nanostructure of PLA. Thermally conductive fillers (Boron nitride and Graphene nanoplatelet) were introduced to improve thermal conductivity. An important factor of PLA aerogel as a universal encapsulation matrix is analyzed based on the solubility parameters and Flory-Huggins parameters. The application cases of smart container and thermal regulation in confined spaces further prove the practical application value in the thermal regulation and energy saving area.pre-print2189 K

    Characterization of expanded austenite developed on AISI 316L stainless steel by plasma carburization

    No full text
    Expanded austenite generation through ion carburizing of AISI 316L using two different reactive gas mixtures (Ar 50%, H2 45%, CH4 5% and Ar 80%, H2 15%, CH4 5%) has been studied. It was found that an 14 µm surface layer of expanded austenite was developed with 30 min processing for both gas mixtures. Nevertheless, AES analyses have shown that on the 150 nm surface layer carbon in a concentration of 12% was diffused and located as carbide. For longer periods of processing, while for the gas mixture with 50% of Ar no significant modifications within those 150 nm surface layer were produced, for the gas mixture with 80% of Ar a gradual increase in the carbon concentration with time was found, with the extra carbon remaining as free carbon. The difference between both situations can be attributed to the different resulting current densities that have been of 7.0 mA cm−2 and 8.1 mA cm−2 for 50% and 80% of Ar respectively. Higher current densities result in higher carbon and Ar ions fluxes inducing, from one side surface element concentration modification through sputtering, and from the other the enhancement of carbon diffusion on the first hundred nanometers of the surface layers. This free carbon on top of the surface layers can act as solid lubricant reducing wear rate. Nevertheless, and in spite of the fact that expanded austenite was proved to be corrosion resistant, a reduction against NaCl solution corrosion in relation to the base material was observed. This lost to corrosion resistance can be attributed to carbide development on the layers closer to the surface that can work as a trigger for localized corrosion.Fil: García Molleja, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); ArgentinaFil: Nosei, L.. Universidad Nacional de Rosario; ArgentinaFil: Ferron, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Bemporad, E.. Universita Di Roma; ItaliaFil: Lesage, J.. Université Des Sciences Et Des Technologies de Lille;Fil: Chicot D.. Université Des Sciences Et Des Technologies de Lille; FranciaFil: Feugeas, Jorge Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentin

    (

    No full text
    Aluminum nitride (AlN) is a ceramic compound that could be used as a processing material for semiconductor industry. However, the AlN crystalline structure plays a crucial role in its performance. In this paper, polycrystalline AlN films have been grown onto Si(1 1 1) and Si(1 0 0) (with an oxide native coverage of SiO2) wafers by RSM (reactive sputter magnetron) technique using a small (5 L) reactor. The development of polycrystalline AlN films with a good texture along (101ˉ1 \begin{array}{ccc}1& 0& \begin{array}{cc}\bar{1}& 1\end{array}\end{array}) planes, i.e., semi-polar structure, was shown. Analyses were done using X-ray diffraction in the Bragg-Brentano mode and in the GIXRD (grazing incidence X-ray diffraction) one, and the texture was determined through pole figures. The structure and composition of these films were also studied by TEM and EDS techniques. Nevertheless, the mapping of the magnetic field between the magnetron and the substrate has shown a lack of symmetry at the region near the substrate. This lack of symmetry can be attributable to the small dimensions of the chamber, and the present paper suggests that this phenomenon is the responsible for the unusual (101ˉ1 \begin{array}{ccc}1& 0& \begin{array}{cc}\bar{1}& 1\end{array}\end{array}) texture developed

    Depth profiling and morphological characterization of AlN thin films deposited on Si substrates using a reactive sputter magnetron

    Get PDF
    It is well-known that the characteristics of aluminum nitride thin films mainly depend on their morphologies, the quality of the film-substrate interfaces and the open volume defects. A study of the depth profiling and morphological characterization of AlN thin films deposited on two types of Si substrates is presented. Thin films of thicknesses between 200 and 400 nm were deposited during two deposition times using a reactive sputter magnetron. These films were characterized by means of X-ray diffraction and imaging techniques (SEM and TEM). To analyze the composition of the films, energy dispersive X-ray spectroscopy was applied. Positron annihilation spectroscopy, specifically Doppler broadening spectroscopy, was used to gather information on the depth profiling of open volume defects inside the films and the AlN films-Si substrate interfaces. The results are interpreted in terms of the structural changes induced in the films as a consequence of changes in the deposition time (i.e., thicknesses) and of the orientation of the substrates

    AlN thin films deposited by DC reactive magnetron sputtering: effect of oxygen on film growth

    Get PDF
    Aluminum nitride is a ceramic compound with many technological applications in many fields, for example optics, electronics and resonators. Contaminants play a crucial role in the AlN performance. This paper focuses mainly in the effect of oxygen when AlN, with O impurities in its structure, is grown on oxidized layers. In this study, AlN thin films have been deposited at room temperature and low residual vacuum on SiO2/Si (1 0 0) substrates. AlN films were grown by DC reactive magnetron sputtering (aluminum target) and atmosphere composed by an argon/nitrogen mixture. Working pressure was 3 mTorr. Film characterization was performed by AES, XRD, SEM, EDS, FTIR, HRTEM, SAED and band-bending method. Our results show that oxidized interlayer imposes compressive stresses to AlN layer, developing a polycrystalline deposition. Indeed, when film thickness is over 900 nm, influence of oxidized interlayer diminishes and crystallographic orientation changes to the (0 0 0 2) one, i.e., columnar structure, and stress relief is induced (there is a transition from compressive to tensile stress). Also, we propose a growth scenario to explain this behaviour
    corecore