10,578 research outputs found
CIXL2: A Crossover Operator for Evolutionary Algorithms Based on Population Features
In this paper we propose a crossover operator for evolutionary algorithms
with real values that is based on the statistical theory of population
distributions. The operator is based on the theoretical distribution of the
values of the genes of the best individuals in the population. The proposed
operator takes into account the localization and dispersion features of the
best individuals of the population with the objective that these features would
be inherited by the offspring. Our aim is the optimization of the balance
between exploration and exploitation in the search process. In order to test
the efficiency and robustness of this crossover, we have used a set of
functions to be optimized with regard to different criteria, such as,
multimodality, separability, regularity and epistasis. With this set of
functions we can extract conclusions in function of the problem at hand. We
analyze the results using ANOVA and multiple comparison statistical tests. As
an example of how our crossover can be used to solve artificial intelligence
problems, we have applied the proposed model to the problem of obtaining the
weight of each network in a ensemble of neural networks. The results obtained
are above the performance of standard methods
Van der Waals spin valves
We propose spin valves where a 2D non-magnetic conductor is intercalated
between two ferromagnetic insulating layers. In this setup, the relative
orientation of the magnetizations of the insulating layers can have a strong
impact on the in-plane conductivity of the 2D conductor. We first show this for
a graphene bilayer, described with a tight-binding model, placed between two
ferromagnetic insulators. In the anti-parallel configuration, a band gap opens
at the Dirac point, whereas in the parallel configuration, the graphene bilayer
remains conducting. We then compute the electronic structure of graphene
bilayer placed between two monolayers of the ferromagnetic insulator CrI,
using density functional theory. Consistent with the model, we find that a gap
opens at the Dirac point only in the antiparallel configuration.Comment: 5 pages, 4 figure
On the Moyal deformation of Nahm Equations in seven dimensions
We show how the reduced (anti-)self-dual Yang-Mills equations in seven
dimensions described by the Nahm equations can be carried over to the
Weyl-Wigner-Moyal formalism. In the process some new solutions for the cases of
gauge groups SU(2) and SL(2,R) are explicitly obtained.Comment: 16+1 pages, LaTeX, no figure
Compressed k2-Triples for Full-In-Memory RDF Engines
Current "data deluge" has flooded the Web of Data with very large RDF
datasets. They are hosted and queried through SPARQL endpoints which act as
nodes of a semantic net built on the principles of the Linked Data project.
Although this is a realistic philosophy for global data publishing, its query
performance is diminished when the RDF engines (behind the endpoints) manage
these huge datasets. Their indexes cannot be fully loaded in main memory, hence
these systems need to perform slow disk accesses to solve SPARQL queries. This
paper addresses this problem by a compact indexed RDF structure (called
k2-triples) applying compact k2-tree structures to the well-known
vertical-partitioning technique. It obtains an ultra-compressed representation
of large RDF graphs and allows SPARQL queries to be full-in-memory performed
without decompression. We show that k2-triples clearly outperforms
state-of-the-art compressibility and traditional vertical-partitioning query
resolution, remaining very competitive with multi-index solutions.Comment: In Proc. of AMCIS'201
Coupling single molecule magnets to quantum circuits
In this work we study theoretically the coupling of single molecule magnets
(SMMs) to a variety of quantum circuits, including microwave resonators with
and without constrictions and flux qubits. The main results of this study is
that it is possible to achieve strong and ultrastrong coupling regimes between
SMM crystals and the superconducting circuit, with strong hints that such a
coupling could also be reached for individual molecules close to constrictions.
Building on the resulting coupling strengths and the typical coherence times of
these molecules (of the order of microseconds), we conclude that SMMs can be
used for coherent storage and manipulation of quantum information, either in
the context of quantum computing or in quantum simulations. Throughout the work
we also discuss in detail the family of molecules that are most suitable for
such operations, based not only on the coupling strength, but also on the
typical energy gaps and the simplicity with which they can be tuned and
oriented. Finally, we also discuss practical advantages of SMMs, such as the
possibility to fabricate the SMMs ensembles on the chip through the deposition
of small droplets.Comment: 23 pages, 12 figure
The voice of birth families to improve visits in foster care
In foster care, contact visits with birth families play an important role in relation to the childâs wellbeing, and they may impact on placement outcomes. However, the views of birth parents with respect to such visits have largely been unexplored. This research is part of a project financed by the regional government of Andalusia (SEJ-7106) regarding contact visits in foster care. This study aims to give voice to parents and gather their views about contact visits, including how they might be improved. Participants were 23 birth families who had contact visits with 35 children in non-kinship foster care. Semi-structured individual interviews were conducted in order to explore two key aspects: the parentsâ opinions regarding the contact visits and the main areas they felt needed improving. The interviews were transcribed and the transcripts were examined using an inductive method of open coding to identify themes among participantsâ responses. The main themes to emerge concerned their general view of contact visits and the organization of visits. The paper discusses the studyâs implications of the findings for practice.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂa Tech
InAs/InP single quantum wire formation and emission at 1.5 microns
Isolated InAs/InP self-assembled quantum wires have been grown using in situ
accumulated stress measurements to adjust the optimal InAs thickness. Atomic
force microscopy imaging shows highly asymmetric nanostructures with average
length exceeding more than ten times their width. High resolution optical
investigation of as-grown samples reveals strong photoluminescence from
individual quantum wires at 1.5 microns. Additional sharp features are related
to monolayer fluctuations of the two dimensional InAs layer present during the
early stages of the quantum wire self-assembling process.Comment: 4 pages and 3 figures submitted to Applied Physics Letter
- âŠ