2,671 research outputs found

    Rotating and counterrotating relativistic thin disks as sources of stationary electrovacuum spacetimes

    Full text link
    A detailed study is presented of the counterrotating model (CRM) for electrovacuum stationary axially symmetric relativistic thin disks of infinite extension without radial stress, in the case when the eigenvalues of the energy-momentum tensor of the disk are real quantities, so that there is not heat flow. We find a general constraint over the counterrotating tangential velocities needed to cast the surface energy-momentum tensor of the disk as the superposition of two counterrotating charged dust fluids. We then show that, in some cases, this constraint can be satisfied if we take the two counterrotating tangential velocities as equal and opposite or by taking the two counterrotating streams as circulating along electro-geodesics. However, we show that, in general, it is not possible to take the two counterrotating fluids as circulating along electro-geodesics nor take the two counterrotating tangential velocities as equal and opposite. A simple family of models of counterrotating charged disks based on the Kerr-Newman solution are considered where we obtain some disks with a CRM well behaved. We also show that the disks constructed from the Kerr-Newman solution can be interpreted, for all the values of parameters, as a matter distribution with currents and purely azimuthal pressure without heat flow. The models are constructed using the well-known "displace, cut and reflect" method extended to solutions of vacuum Einstein-Maxwell equations. We obtain, in all the cases, counterrotating Kerr-Newman disks that are in agreement with all the energy conditions.Comment: 22 pages, 7 figures, Late

    The Martin-Benito-Mena Marugan-Olmedo prescription for the Dapor-Liegener model of Loop Quantum Cosmology

    Full text link
    Recently, an alternative Hamiltonian constraint for Loop Quantum Cosmology has been put forward by Dapor and Liegener, inspired by previous work on regularization due to Thiemann. Here, we quantize this Hamiltonian following a prescription for cosmology proposed by Mart\'{\i}n-Benito, Mena Marug\'an, and Olmedo. To this effect, we first regularize the Euclidean and Lorentzian parts of the Hamiltonian constraint separately in the case of a Bianchi I cosmology. This allows us to identify a natural symmetrization of the Hamiltonian which is apparent in anisotropic scenarios. Preserving this symmetrization in isotropic regimes, we then determine the Hamiltonian constraint corresponding to a Friedmann-Lema\^itre-Robertson-Walker cosmology, which we proceed to quantize. We compute the action of this Hamiltonian operator in the volume eigenbasis and show that it takes the form of a fourth-order difference equation, unlike in standard Loop Quantum Cosmology, where it is known to be of second order. We investigate the superselection sectors of our constraint operator, proving that they are semilattices supported only on either the positive or the negative semiaxis, depending on the triad orientation. Remarkably, the decoupling between semiaxes allows us to write a closed expression for the generalized eigenfunctions of the geometric part of the constraint. This expression is totally determined by the values at the two points of the semilattice that are closest to the origin, namely the two contributions with smallest eigenvolume. This is in clear contrast with the situation found for the standard Hamiltonian of Loop Quantum Cosmology, where only the smallest value is free. This result indicates that the degeneracy of the new geometric Hamiltonian operator is equal to two, doubling the possible number of solutions with respect to the conventional quantization considered until now.Comment: 15 pages, published in Physical Review

    High-order gauge-invariant perturbations of a spherical spacetime

    Get PDF
    We complete the formulation of a general framework for the analysis of high-order nonspherical perturbations of a four-dimensional spherical spacetime by including a gauge-invariant description of the perturbations. We present a general algorithm to construct these invariants and provide explicit formulas for the case of second-order metric perturbations. We show that the well-known problem of lack of invariance for the first-order perturbations with l=0,1 propagates to increasing values of l for perturbations of higher order, owing to mode coupling. We also discuss in which circumstances it is possible to construct the invariants

    Evaluation of tree-based routing Ethernet

    Get PDF
    Tree-based Routing (TRE) revisits Tree-based Routing Architecture for Irregular Networks (TRAIN)—a forwarding scheme based on a spanning tree that was extended to use some shortcut links.We propose its adaptation to Ethernet, using a new type of hierarchical Ethernet addresses and a procedure to assign them to bridges. We show that compared to RSTP, TRE offers improved throughput. The impact of transient loops in TRE is lower compared to the application of the classical shortest path routing protocols to Ethernet. Finally, TRE is self-configuring and its forwarding process is simpler and more efficient than in standard Ethernet and shortest path routing proposals.Publicad

    Hierarchical Up/Down Routing Architecture for Ethernet backbones and campus networks

    Get PDF
    We describe a new layer two distributed and scalable routing architecture. It uses an automatic hierarchical node identifier assignment mechanism associated to the rapid spanning tree protocol. Enhanced up/down mechanisms are used to prohibit some turns at nodes to break cycles, instead of blocking links like the spannning tree protocol does. The protocol performance is similar or better than other turn prohibition algorithms recently proposed with lower complexity O(Nd) and better scalability. Simulations show that the fraction of prohibited turns over random networks is less than 0.2. The effect of root bridge election on the performance of the protocol is limited both in the random and regular networks studied. The use of hierarchical, tree-descriptive addresses simplifies the routing, and avoids the need of all nodes having a global knowleddge of the network topology. Routing frames through the hierarchical tree at very high speed is possible by progressive decoding of frame destination address, without routing tables or port address learning. Coexistence with standard bridges is achieved using combined devices: bridges that forward the frames having global destination MAC addresses as standard bridges and frames with local MAC frames with the proposed protocol.Publicad

    Second and higher-order perturbations of a spherical spacetime

    Get PDF
    The Gerlach and Sengupta (GS) formalism of coordinate-invariant, first-order, spherical and nonspherical perturbations around an arbitrary spherical spacetime is generalized to higher orders, focusing on second-order perturbation theory. The GS harmonics are generalized to an arbitrary number of indices on the unit sphere and a formula is given for their products. The formalism is optimized for its implementation in a computer algebra system, something that becomes essential in practice given the size and complexity of the equations. All evolution equations for the second-order perturbations, as well as the conservation equations for the energy-momentum tensor at this perturbation order, are given in covariant form, in Regge-Wheeler gauge.Comment: Accepted for publication in Physical Review

    Primordial perturbations in the Dapor-Liegener model of hybrid loop quantum cosmology

    Full text link
    In this work, we extend the formalism of hybrid loop quantum cosmology for primordial perturbations around a flat, homogeneous, and isotropic universe to the new treatment of Friedmann-Lema\^itre-Robertson-Walker geometries proposed recently by Dapor and Liegener, based on an alternative regularization of the Hamiltonian constraint. In fact, our discussion is applicable also to other possible regularization schemes for loop quantum cosmology, although we specialize our analysis to the Dapor-Liegener proposal and construct explicitly all involved quantum operators for that case.Comment: 17 page
    • …
    corecore