39,302 research outputs found

    Classical singularities and Semi-Poisson statistics in quantum chaos and disordered systems

    Full text link
    We investigate a 1D disordered Hamiltonian with a non analytical step-like dispersion relation whose level statistics is exactly described by Semi-Poisson statistics(SP). It is shown that this result is robust, namely, does not depend neither on the microscopic details of the potential nor on a magnetic flux but only on the type of non-analyticity. We also argue that a deterministic kicked rotator with a non-analytical step-like potential has the same spectral properties. Semi-Poisson statistics (SP), typical of pseudo-integrable billiards, has been frequently claimed to describe critical statistics, namely, the level statistics of a disordered system at the Anderson transition (AT). However we provide convincing evidence they are indeed different: each of them has its origin in a different type of classical singularities.Comment: typos corrected, 4 pages, 3 figure

    A semiclassical theory of the Anderson transition

    Full text link
    We study analytically the metal-insulator transition in a disordered conductor by combining the self-consistent theory of localization with the one parameter scaling theory. We provide explicit expressions of the critical exponents and the critical disorder as a function of the spatial dimensionality, dd. The critical exponent ν\nu controlling the divergence of the localization length at the transition is found to be ν=12+1d−2\nu = {1 \over 2}+ {1 \over {d-2}}. This result confirms that the upper critical dimension is infinity. Level statistics are investigated in detail. We show that the two level correlation function decays exponentially and the number variance is linear with a slope which is an increasing function of the spatial dimensionality.Comment: 4 pages, journal versio

    Computability of the causal boundary by using isocausality

    Full text link
    Recently, a new viewpoint on the classical c-boundary in Mathematical Relativity has been developed, the relations of this boundary with the conformal one and other classical boundaries have been analyzed, and its computation in some classes of spacetimes, as the standard stationary ones, has been carried out. In the present paper, we consider the notion of isocausality given by Garc\'ia-Parrado and Senovilla, and introduce a framework to carry out isocausal comparisons with standard stationary spacetimes. As a consequence, the qualitative behavior of the c-boundary (at the three levels: point set, chronology and topology) of a wide class of spacetimes, is obtained.Comment: 44 pages, 5 Figures, latex. Version with minor changes and the inclusion of Figure

    State selection in the noisy stabilized Kuramoto-Sivashinsky equation

    Full text link
    In this work, we study the 1D stabilized Kuramoto Sivashinsky equation with additive uncorrelated stochastic noise. The Eckhaus stable band of the deterministic equation collapses to a narrow region near the center of the band. This is consistent with the behavior of the phase diffusion constants of these states. Some connections to the phenomenon of state selection in driven out of equilibrium systems are made.Comment: 8 pages, In version 3 we corrected minor/typo error

    Anderson transition in a three dimensional kicked rotor

    Full text link
    We investigate Anderson localization in a three dimensional (3d) kicked rotor. By a finite size scaling analysis we have identified a mobility edge for a certain value of the kicking strength k=kck = k_c. For k>kck > k_c dynamical localization does not occur, all eigenstates are delocalized and the spectral correlations are well described by Wigner-Dyson statistics. This can be understood by mapping the kicked rotor problem onto a 3d Anderson model (AM) where a band of metallic states exists for sufficiently weak disorder. Around the critical region k≈kck \approx k_c we have carried out a detailed study of the level statistics and quantum diffusion. In agreement with the predictions of the one parameter scaling theory (OPT) and with previous numerical simulations of a 3d AM at the transition, the number variance is linear, level repulsion is still observed and quantum diffusion is anomalous with ∝t2/3 \propto t^{2/3}. We note that in the 3d kicked rotor the dynamics is not random but deterministic. In order to estimate the differences between these two situations we have studied a 3d kicked rotor in which the kinetic term of the associated evolution matrix is random. A detailed numerical comparison shows that the differences between the two cases are relatively small. However in the deterministic case only a small set of irrational periods was used. A qualitative analysis of a much larger set suggests that the deviations between the random and the deterministic kicked rotor can be important for certain choices of periods. Contrary to intuition correlations in the deterministic case can either suppress or enhance Anderson localization effects.Comment: 10 pages, 5 figure
    • …
    corecore