3 research outputs found

    Development of Experimental Chamber for Testing High-Temperature Hydrogen Permeation through Metal Foils

    Get PDF
    This paper describes the methodology for conducting experiments to study hydrogen diffusion through metal membranes using a specially designed diffusion chamber of an automated gas reaction controller complex. This complex allows experiments to study hydrogen diffusion with the following parameters: the inlet hydrogen pressure is up to 50 atmospheres, and the temperature in the chamber is from 30 °C to 1000 °C. The size of the samples is limited to a diameter of 10 mm and a thickness of 100 µm. The method for calculating the diffusion coefficient based on the Fick equation is also described. When studying hydrogen diffusion through a sample of Zr–1Nb alloy with nickel film deposited at the temperature of 550 °C, it was noted that phase transformations can be observed on the diffusion curve

    Laboratory X-ray Diffraction Complex for In Situ Investigations of Structural Phase Evolution of Materials under Gaseous Atmosphere

    Get PDF
    In this work, a laboratory X-ray diffraction complex for in situ investigations of structural phase evolution of materials under gaseous atmosphere and elevated temperatures was developed. The approbation of the complex was carried out using a commercially pure titanium (CP-Ti) powder, zirconium (Zr-1Nb) alloy and electron beam melted Ti-6Al-4V alloy. It was established that hydrogenation of the CP-Ti powder occurred at a temperature of 500 °C and a hydrogen pressure of 0.5 atm, accompanied by the formation of metastable ? titanium hydride (?-TiH) phase. The lifetime of the ?-TiH phase was 35–40 min. Decomposition of the ?-TiH occurred after reaching a temperature of 650 °C as a result of the thermally stimulated desorption of hydrogen. The a-Zr ? d-ZrH phase transformation was observed under hydrogenation of the zirconium Zr-1Nb alloy at a temperature of 350 °C and a hydrogen pressure of 0.5 atm. It was revealed that the increase in hydrogenation temperature to 450 °C accelerated this transformation by two times. Hydrogenation of the electron beam melted titanium Ti-6Al-4V alloy at a temperature of 650 °C and hydrogen pressure of 0.5 atm was accompanied by the a ? a + Я ? Я + a2 phase transformations

    Hydrogenation-induced microstructure changes in titanium

    No full text
    Microstructure changes of commercially pure titanium in a wide range of hydrogen concentrations from 0.8 at.% to 32.0 at.% were studied by means of positron lifetime spectroscopy and Doppler broadening spectroscopy. We have obtained new experimental data on the evolution of positron annihilation parameters ?f, ?d and their corresponding intensities If, Id, as well as relative changes of parameters S/S0 and W/W0 depending on the hydrogen concentration in commercially pure titanium after gas-phase hydrogenation at 873 K. Results suggest that the hydrogenation of Ti samples up to concentrations of 1.31–2.27 at.% and subsequent cooling to a room temperature leads to the formation of vacancies and vacancy clusters. Further increase of the hydrogen concentration up to 32.0 at.% leads to the interaction of hydrogen with these defects and the formation of “cluster-hydrogen” and “vacancy-hydrogen” complexes
    corecore