108 research outputs found
V. I. Vernadskiy' symmetry principle In science, philosophy, and education
This paper presents the content of the Β«Principle of symmetryΒ» of V.I. Vernadskiy on the basis of the scheme of division of E. Wigner' scientific knowledge. Unlike private symmetry principles of physics, Vernadskiy' "Principle of symmetry" is of a general nature. Its content is shown as an hierarchical system of all forms of symmetry. The value of this system of symmetries in science and philosophy lies in the fact that it forms the skeleton of the holistic view of scientific knowledge. Its formation is still far from over, though, it forms throughout the whole period of science development. In modern conditions of the avalanche growth of scientific knowledge, the integrating role of the system of symmetry forms is the factor which is designed to ensure a balance between the following two tendencies: differentiation and integration of both scientific and educational disciplines. To optimize the structure of educational content on this basis. Circumstance that facilitates the use of the system of symmetry forms during the education is that the individual consciousness, according to works of Jean Piaget, is formed on the basis of symmetry. This allows us to present general naturalscience courses at different levels of severity from perception of reality, based on intuitive perception, to consistently axiomatic oneΠ ΡΠ°Π±ΠΎΡΠ΅ ΡΠ°ΡΠΊΡΡΡΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Β«ΠΡΠΈΠ½ΡΠΈΠΏΠ° ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈΒ» Π. Π. ΠΠ΅ΡΠ½Π°Π΄ΡΠΊΠΎΠ³ΠΎ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡ
Π΅ΠΌΡ Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Π. ΠΠΈΠ³Π½Π΅ΡΠΎΠΌ. Π ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΡΠ°ΡΡΠ½ΡΡ
ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠ² ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΡΠΈΠ·ΠΈΠΊΠΈ Β«ΠΡΠΈΠ½ΡΠΈΠΏ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈΒ» ΠΠ΅ΡΠ½Π°Π΄ΡΠΊΠΎΠ³ΠΎ ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ±ΡΠΈΠΉ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ. ΠΠ³ΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΠ°ΡΠΊΡΡΠ²Π°Π΅ΡΡΡ ΠΊΠ°ΠΊ ΠΈΠ΅ΡΠ°ΡΡ
ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° Π²ΡΠ΅Ρ
ΡΠΎΡΠΌ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ. ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΉ Π΄Π»Ρ Π½Π°ΡΠΊΠΈ ΠΈ ΡΠΈΠ»ΠΎΡΠΎΡΠΈΠΈ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΎΠ½Π° ΡΠΎΡΠΌΠΈΡΡΠ΅Ρ ΡΠΊΠ΅Π»Π΅Ρ ΡΠ΅Π»ΠΎΡΡΠ½ΠΎΠΉ ΠΊΠ°ΡΡΠΈΠ½Ρ Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ. ΠΠ΅ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π΅ΡΠ΅ Π΄Π°Π»Π΅ΠΊΠΎ ΠΎΡ Π·Π°Π²Π΅ΡΡΠ΅Π½ΠΈΡ, Ρ
ΠΎΡΡ ΠΈ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°Π΅ΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄Π° ΡΠ°Π·Π²ΠΈΡΠΈΡ Π½Π°ΡΠΊΠΈ. Π ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π»Π°Π²ΠΈΠ½ΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ° ΠΎΠ±ΡΠ΅ΠΌΠ° Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ ΠΈ Π΅Π³ΠΎ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°ΡΠΈΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ Π² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠ° ΠΈΠ½ΡΠ΅Π³ΡΠ°ΡΠΈΠΈ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠ΅Π³ΠΎ ΡΠ΅Π»ΠΎΡΡΠ½ΡΡ ΠΊΠ°ΡΡΠΈΠ½Ρ. Π’Π°ΠΊΠΈΠΌ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠΌ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΠ΅ΡΠ°ΡΡ
ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΡΠΎΡΠΌ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠ°Ρ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ ΡΡΡΡΠΊΡΡΡΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ. ΠΠ±ΡΡΠΎΡΡΠ΅Π»ΡΡΡΠ²ΠΎΠΌ, ΠΎΠ±Π»Π΅Π³ΡΠ°ΡΡΠΈΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠΎΡΠΌ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎ, ΡΡΠΎ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠΎΠ·Π½Π°Π½ΠΈΠ΅, ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΡΠ°Π±ΠΎΡΠ°ΠΌ ΠΠ°Π½Π° ΠΠΈΠ°ΠΆΠ΅, ΡΠ°ΠΊ ΠΆΠ΅ ΡΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΎ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΉ. ΠΠΎΡΡΠΎΠΌΡ ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠΈΡ
Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ½Π°ΡΡΠ½ΡΡ
ΠΊΡΡΡΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ ΡΡΡΠΎΠΈΡΡ Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΡΠΎΠ²Π½ΡΡ
ΡΡΡΠΎΠ³ΠΎΡΡΠΈ ΠΎΡ ΠΎΠ±ΡΠ°Π·Π½ΠΎΠ³ΠΎ, ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π½Π° ΠΈΠ½ΡΡΠΈΡΠΈΠ²Π½ΠΎΠ΅ Π²ΠΎΡΠΏΡΠΈΡΡΠΈΠ΅, Π΄ΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π°ΠΊΡΠΈΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³
ΠΠ·Π³Π»ΡΠ΄ Π½Π° ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΊΡΠΈΠ·ΠΈΡΠ° ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· ΠΏΡΠΈΠ·ΠΌΡ ΠΎΠΏΡΡΠ° ΠΈΡΡΠΎΡΠΈΠΈ Π½Π°ΡΠΊΠΈ. Π§Π°ΡΡΡ I. Π‘ΡΡΡΠΊΡΡΡΠ° Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ
Introduction. The issue of the global educational crisis was outlined by Ch. P. Snow and denoted by Ph. H. Coombs more than sixty years ago. The viewpoints on this problem outspoken ever since are diversified, but it did not lead to blunting of acuteness thereof. It gives the evidence of the necessity to go on revealing and studying the reasons creating the global educational crisis, of which the rapid growth of scientific knowledge and its accelerated differentiation are outlined by researchers as primary ones. It determines the topicality of researching the structure of scientific knowledge, which is a determinant of the basic education content through the lens of the history of science. The aim of the present study is substantiating of the idea that the basic reason of the world educational crisis is a result of strengthening of scientific knowledge differentiation due to acceleration of its volume growth and developing the approach to overcome the crisis. Methodology and research methods. The methodology of the study is based on the ideology of F. Klein (the Erlangen programme) and the ideas of E. Wigner about the levels of division of the scientific knowledge field (the totality of these ideas allows using them as a tool for description of the scientific knowledge structure and, consequently, of the structure of the education content, the determinant whereof it is); on the personal-activity approach developed by V. S. Lednev for the analysis of the structure of the education content, and on the approaches to description of the behaviour of complex systems on the base of regular laws established by synergetics. Results. Examining the history of development of the scientific knowledge structure within the ideology of F. Kleinβs Erlangen programme allowed coming to the conclusion that in general it should be described as a result of the non-completed process of formation of the pattern of dividing the entire scientific knowledge field into three areas constituting three levels: phenomena of nature, laws of nature and the field of symmetry principles. In proportion to growing, each next level provides the previous one with its structure. The currently accepted classification of sciences is a horizontal section of the three-level pattern of dividing the scientific knowledge in the field of laws of nature. Scientific novelty. The paper evidences that the three-level pattern of dividing the scientific knowledge is formed in the course of the history of science as a basis of integration of the scientific knowledge, equalising the process of its differentiation, which shall allow optimising the content of general education with strengthening the integration of its disciplines. Practical significance. The ideas of the scientific knowledge structure, inherent to the three-level pattern of dividing the scientific knowledge, will be utilised as the basis for the formation of a new variant of the general education content structure, which will allow optimising it and mitigating the acuteness of the global educational crisis related to the progressing differentiation of scientific knowledge. Β© 2020 Russian State Vocational Pedagogical University. All rights reserved
Doping induced spin state transition in LixCoO2 as studied by the GGA + DMFT calculations
The magnetic properties of LixCoO2 for x = 0.94, 0.75, 0.66, and 0.51 are investigated within the method combining the generalized gradient approximation with dynamical mean field theory (GGA + DMFT). A delicate interplay between Hundβs exchange energy and t2gβeg crystal field splitting is found to be responsible for the high-spin to low-spin state transition for Co4+ ions. The GGA + DMFT calculations show that the Co4+ ions at a small doping level adopt the high-spin state, while delithiation leads to an increase in the crystal field splitting and low-spin state becomes preferable. The Co3+ ions are found to stay in the low-spin configuration for any x values. Β© 2016, Pleiades Publishing, Inc
ΠΠ·Π³Π»ΡΠ΄ Π½Π° ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΊΡΠΈΠ·ΠΈΡΠ° ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· ΠΏΡΠΈΠ·ΠΌΡ ΠΎΠΏΡΡΠ° ΠΈΡΡΠΎΡΠΈΠΈ Π½Π°ΡΠΊΠΈ. ΡΠ°ΡΡΡ II. ΡΡΡΡΠΊΡΡΡΠ° ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ
Introduction. The first part of this work is devoted to the examination of the scientific knowledge structure as a three-level scheme of its division (the field of phenomena of nature, laws of nature and the field of symmetry principles), wherein each next level provides the previous one with its structure. According to V. S. Lednev's approach, scientific knowledge is a determinant of the general education content. Therefore, the general education content structure requires to be revised as well. Aim. The aim of the current study is the determination of a needed alteration of the general education structure corresponding to integrative trends, which have been registered in the process of formation of the scientific knowledge new structure. Methodology and research methods. The methodology of the study is based on the ideology of F. Klein (the Erlangen programme) and the ideas of E. Wigner about the levels of division of the scientific knowledge field (the totality of these ideas allows using them as a tool for description of the scientific knowledge structure and, consequently, of the structure of the education content, the determinant whereof it is); on the personal-activity approach developed by V. S. Lednev for the analysis of the structure of the education content, and on the approaches to description of the behaviour of complex systems on the base of regular laws established by synergetics. Results and scientific novelty. A new element, specifically βStructure of scientific knowledge (symmetry)β through line, is proposed for introducing into the general education content structure. Its function is the global integration of subject-based through lines of the general education. On this basis, it is possible to optimise the content of education that balances the process of differentiation within scientific knowledge. It allows solving one of the topical issues of the global educational crisis related to the constant growth of the scientific knowledge volume and fragmentation thereof. The present paper takes into consideration that certain features of sporadic formation of such a new element of the education content structure take place. Among them, one can mention the attempts to launch βConcepts of the Modern Natural Scienceβ and βScientific World Viewβ courses, discussion of possibilities to use synergetics in pedagogy and active discussion of use of the ideas of symmetry within various disciplines - from humanitarian to science, technology, engineering and mathematics (STEM). The perspectives of further development of formulated ideas about the scientific knowledge structure and the general education content structure in light of trends in STEM are also discussed. Practical significance. The ideas about βStructure of scientific knowledge (symmetry)β through line will be utilised for task-oriented revision and re-distributing of the content of subject-based through lines of the general education with the aim of its optimisation, taking into account the highest level of the scientific knowledge integration, which was formed in the course of the evolution thereof. Β© 2021 Russian State Vocational Pedagogical University. All rights reserved
Natural-science education: scientific and religious knowledge correlation in the view of a symmetry principle. Part I. The content of a symmetry principle
The aim of the investigation is to disclose the content of a symmetry principle; to show system hierarchy of its forms, developed in the course of evolution of scientific knowledge, a society and development of individual consciousness of the person.Β Methods. Based on the analysis of existing scientific sources, comparison, synthesis and generalisation of its content, the role of symmetry was found out in the course of historical formation of scientific disciplines, arrangement of an empirical set of the facts and its subsequent registration in the form of strict deductive systems.Β Results. It is proved that the concept Β«a symmetry principleΒ» (V. I. Vernadsky was the first to coin this concept into the circulation) objectifies now the highest level of scientific knowledge. Following E. Vignerβs works, it is said that set of forms of symmetry determines structure of scientific knowledge. On the one hand, these forms have got a deep empirical basis and a close connection with figurative perception of the validity; on the other β they have strict mathematical definitions and generate particular principles of symmetry of Mathematics and Physics based on axiomatic constructions of exact disciplines.Β Stages of formation and development of a number of scientific disciplines such as Mathematics, Physics, Chemistry and Biology are compared; the peculiarities and common features of its evolution are designated. Invariants and corresponding symmetries in formation of individual consciousness of the person are allocated.Β Scientific novelty. Developing V. I. Vernadskyβs idea, as he used only the short characteristic of a general scientific principle of symmetry, the authors of the present study consider symmetry forms in various branches of knowledge as particular displays of the given principle. Based on the principle of symmetry as a set of symmetry forms, this principle allows the authors to take a fresh look at the decision of methodological problems of a science, in particular problems of a correlation of scientific and religious knowledge, and as a whole β forming of hierarchy of scientific disciplines that will include not only all existing scientific directions from strict deductive to empirical, but even those directions that are not recognised as scientific disciplines. Such possibilities are given by reason of the double logic status of concept Β«symmetryΒ» β as the general inductive and as primary deductive phenomenon.Β Practical significance. Research outcomes can be useful and form a basis for optimisation of structure of the educational content β designing of a new throughline of the training providing formation of a complete picture of scientific knowledge. The necessity of such throughline is connected with education crisis in the conditions of continuously growing scope of information and as a result redundancy of curriculums. The disciplines of the general natural-science courses, such as Β«Natural-science World ViewΒ» and Β«Concept of Modern Natural SciencesΒ» can be independent elements of similar training under the condition of selection of its content according to a fundamental principle of symmetryΒ Π¦Π΅Π»ΠΈ ΡΠ°Π±ΠΎΡΡ β ΡΠ°ΡΠΊΡΡΡΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ° ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ, ΠΏΠΎΠΊΠ°Π·Π°ΡΡ ΠΈΠ΅ΡΠ°ΡΡ
ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ Π΅Π΅ ΡΠΎΡΠΌ, ΡΠ»ΠΎΠΆΠΈΠ²ΡΡΡΡΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ²ΠΎΠ»ΡΡΠΈΠΈ Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ, ΠΎΠ±ΡΠ΅ΡΡΠ²Π° ΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ·Π½Π°Π½ΠΈΡ Π»ΠΈΡΠ½ΠΎΡΡΠΈ. ΠΠ΅ΡΠΎΠ΄Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ. ΠΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π° ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΡ
Π½Π°ΡΡΠ½ΡΡ
ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ², ΡΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΡ, ΡΠΈΠ½ΡΠ΅Π·Π° ΠΈ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΡ ΠΈΡ
ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π²ΡΡΡΠ½ΡΠ»Π°ΡΡ ΡΠΎΠ»Ρ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΈΡΡΠΎΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π°ΡΡΠ½ΡΡ
Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½, ΡΠΏΠΎΡΡΠ΄ΠΎΡΠ΅Π½ΠΈΡ ΡΠΌΠΏΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡΠ° ΡΠ°ΠΊΡΠΎΠ² ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅Π³ΠΎ ΠΈΡ
ΠΎΡΠΎΡΠΌΠ»Π΅Π½ΠΈΡ Π² Π²ΠΈΠ΄Π΅ ΡΡΡΠΎΠ³ΠΈΡ
Π΄Π΅Π΄ΡΠΊΡΠΈΠ²Π½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. ΠΠΎΠΊΠ°Π·ΡΠ²Π°Π΅ΡΡΡ, ΡΡΠΎ ΠΏΠΎΠ½ΡΡΠΈΠ΅ Β«ΠΏΡΠΈΠ½ΡΠΈΠΏ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈΒ», ΠΊΠΎΡΠΎΡΡΠΉ Π²ΠΏΠ΅ΡΠ²ΡΠ΅ Π²Π²Π΅Π» Π² ΠΎΠ±ΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π. Π. ΠΠ΅ΡΠ½Π°Π΄ΡΠΊΠΈΠΉ, Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΠΎΠ»ΠΈΡΠ΅ΡΠ²ΠΎΡΡΠ΅Ρ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π³Π»ΡΠ±ΠΈΠ½Π½ΡΠΉ ΡΡΠΎΠ²Π΅Π½Ρ Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ. Π‘ΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ ΡΠΎΡΠΌ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ, ΠΊΠ°ΠΊ ΡΡΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΠ· ΡΠ°Π±ΠΎΡ Π. ΠΠΈΠ³Π½Π΅ΡΠ°, Π΄Π΅ΡΠ΅ΡΠΌΠΈΠ½ΠΈΡΡΠ΅Ρ ΡΡΡΡΠΊΡΡΡΡ Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ. Π‘ ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ, Ρ ΡΡΠΈΡ
ΡΠΎΡΠΌ Π³Π»ΡΠ±ΠΎΠΊΠ°Ρ ΡΠΌΠΏΠΈΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΡΠ½ΠΎΠ²Π° ΠΈ ΡΠ΅ΡΠ½Π°Ρ ΡΠ²ΡΠ·Ρ Ρ ΠΎΠ±ΡΠ°Π·Π½ΡΠΌ Π²ΠΎΡΠΏΡΠΈΡΡΠΈΠ΅ΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ; Ρ Π΄ΡΡΠ³ΠΎΠΉ β ΠΎΠ½ΠΈ ΠΈΠΌΠ΅ΡΡ ΡΡΡΠΎΠ³ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ ΠΏΠΎΡΠΎΠΆΠ΄Π°ΡΡ ΡΠ°ΡΡΠ½ΡΠ΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ ΠΈ ΡΠΈΠ·ΠΈΠΊΠΈ, ΡΠ»ΡΠΆΠ°ΡΠΈΠ΅ Π±Π°Π·ΠΎΠΉ Π°ΠΊΡΠΈΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΉ ΡΠΎΡΠ½ΡΡ
Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½. Π‘ΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½Ρ ΡΡΠ°ΠΏΡ ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΈ ΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠ΄Π° Π½Π°ΡΡΠ½ΡΡ
Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½: ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ, ΡΠΈΠ·ΠΈΠΊΠΈ, Ρ
ΠΈΠΌΠΈΠΈ ΠΈ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ; ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½Ρ ΠΎΠ±ΡΠΈΠ΅ ΡΠ΅ΡΡΡ ΠΈΡ
ΡΠ²ΠΎΠ»ΡΡΠΈΠΈ ΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ. ΠΡΠ΄Π΅Π»Π΅Π½Ρ ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΡ ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΠΈΠΌ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ Π² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠ·Π½Π°Π½ΠΈΡ Π»ΠΈΡΠ½ΠΎΡΡΠΈ.Β ΠΠ°ΡΡΠ½Π°Ρ Π½ΠΎΠ²ΠΈΠ·Π½Π°. Π Π°Π·Π²ΠΈΠ²Π°Ρ ΠΈΠ΄Π΅Ρ Π. Π. ΠΠ΅ΡΠ½Π°Π΄ΡΠΊΠΎΠ³ΠΎ, ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΠ²ΡΠ΅Π³ΠΎΡΡ ΠΊΡΠ°ΡΠΊΠΎΠΉ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΎΠΉ ΠΎΠ±ΡΠ΅Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ° ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ, Π°Π²ΡΠΎΡΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ ΡΠΎΡΠΌΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΎΡΡΠ°ΡΠ»ΡΡ
Π·Π½Π°Π½ΠΈΡ ΠΊΠ°ΠΊ ΡΠ°ΡΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ°. ΠΠΏΠΎΡΠ° Π½Π° ΠΏΡΠΈΠ½ΡΠΈΠΏ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ, ΠΏΠΎΠ½ΠΈΠΌΠ°Π΅ΠΌΡΠΉ ΠΊΠ°ΠΊ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ Π΅Π΅ (ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ) ΡΠΎΡΠΌ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎ-Π½ΠΎΠ²ΠΎΠΌΡ ΠΏΠΎΠ΄ΠΎΠΉΡΠΈ ΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌ Π½Π°ΡΠΊΠΈ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ ΠΈ ΡΠ΅Π»ΠΈΠ³ΠΈΠΎΠ·Π½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ ΠΈ Π² ΡΠ΅Π»ΠΎΠΌ β Π²ΡΡΡΡΠ°ΠΈΠ²Π°Π½ΠΈΡ ΠΈΠ΅ΡΠ°ΡΡ
ΠΈΠΈ Π½Π°ΡΡΠ½ΡΡ
Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½, ΠΊΠΎΡΠΎΡΠΎΠΉ Π±ΡΠ΄ΡΡ ΠΎΡ
Π²Π°ΡΠ΅Π½Ρ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π²ΡΠ΅ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΠ΅ Π½Π°ΡΡΠ½ΡΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΡ ΡΡΡΠΎΠ³ΠΈΡ
Π΄Π΅Π΄ΡΠΊΡΠΈΠ²Π½ΡΡ
Π΄ΠΎ ΡΠΌΠΏΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
, Π½ΠΎ Π΄Π°ΠΆΠ΅ ΡΠ΅, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠΊΠ° Π΅ΡΠ΅ Π½Π΅ ΠΏΡΠΈΠ·Π½Π°Π½Ρ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π½Π°ΡΡΠ½ΡΡ
Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½. Π’Π°ΠΊΠΈΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»ΡΡΡΡΡ Π±Π»Π°Π³ΠΎΠ΄Π°ΡΡ Π΄Π²ΠΎΠΉΠ½ΠΎΠΌΡ Π»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΡΠ°ΡΡΡΡ ΠΏΠΎΠ½ΡΡΠΈΡ Β«ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΒ» β ΠΊΠ°ΠΊ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΈΠ½Π΄ΡΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΈ ΠΊΠ°ΠΊ ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠ³ΠΎ Π΄Π΅Π΄ΡΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ΅Π½ΠΎΠΌΠ΅Π½Π°. ΠΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅. ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΠ³ΡΡ ΡΠ»ΡΠΆΠΈΡΡ ΠΎΡΠ½ΠΎΠ²ΠΎΠΉ Π΄Π»Ρ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΠΈ ΡΡΡΡΠΊΡΡΡΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ β ΡΠΎΠ·Π΄Π°Π½ΠΈΡ Π½ΠΎΠ²ΠΎΠΉ ΡΠΊΠ²ΠΎΠ·Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡΠ΅ΠΉ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅Π»ΠΎΡΡΠ½ΠΎΠΉ ΠΊΠ°ΡΡΠΈΠ½Ρ Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ. ΠΠ΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΡΠ°ΠΊΠΎΠΉ ΡΠΊΠ²ΠΎΠ·Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΡΠ²ΡΠ·Π°Π½Π° Ρ ΠΊΡΠΈΠ·ΠΈΡΠΎΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π²ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎ ΡΠ°ΡΡΡΡΠ΅Π³ΠΎ ΠΎΠ±ΡΠ΅ΠΌΠ° ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠ΅Π³ΠΎ ΠΈΠ·-Π·Π° ΡΡΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΡΠ΅Π±Π½ΡΡ
ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌ. ΠΠ²ΡΠΎΠ½ΠΎΠΌΠ½ΡΠΌΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΠΈΠΊΠ»Ρ ΠΎΠ±ΡΠΈΡ
Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ½Π°ΡΡΠ½ΡΡ
ΠΊΡΡΡΠΎΠ², ΡΠ°ΠΊΠΈΡ
ΠΊΠ°ΠΊ Β«ΠΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ½Π°ΡΡΠ½Π°Ρ ΠΊΠ°ΡΡΠΈΠ½Π° ΠΌΠΈΡΠ°Β» ΠΈ Β«ΠΠΎΠ½ΡΠ΅ΠΏΡΠΈΠΈ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π΅ΡΡΠ΅ΡΡΠ²ΠΎΠ·Π½Π°Π½ΠΈΡΒ» ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ ΠΎΡΠ±ΠΎΡΠ° ΠΈΡ
ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠΌ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ
SYMMETRY PRINCIPLE AS A BASIS FOR INTEGRATION IN SCIENCE AND ITS VALUE FOR EDUCATION
Introduction. In recent decades, the problem of the formation of a holisticΒ perception in studentsβ minds of the surrounding reality in the field of educationΒ has become acute. The buildup of scientific knowledge, which is a determinant of theΒ structure of the content of education, occurs impetuously. Studentsβ thinking and consciousness become fragmented due to the exorbitant, permanently increasing amount of information that is presented for learning, but cannot be fully mastered by students. The root cause is imbalance in the curriculum levels of integration and differentiation (with a roll in the direction of the latter). To compensate the current imbalance and reverse the dangerous situation that threatens society with extremely negative consequences, an audit of the structure of educational content and the search for its new conceptual models are required.The aim of the publication was to show the importance of using the phenomenonΒ of symmetry in the construction of structures of scientific knowledge andΒ the content of education.Methodology and research methods. The study was based on the ideology ofΒ F. Klein βErlangen programmeβ; E. Wignerβs scheme, showing the division of areasΒ of scientific knowledge; generalised idea of symmetry by G. Weyl; the personal-activityΒ approach to structuring the content of education, improved by V. S. Lednev;Β and also on the theoretical and methodological analysis of other scientific sourcesΒ related to the topic under discussion.Results and scientific novelty. The general idea of symmetry, borrowed fromΒ geometry, but nonetheless having a general methodological rather than a particularΒ character, is proposed as the basis for systematising sections of scientificΒ knowledge and structuring foundation of the content of modern education. TheΒ ability of symmetry to combine the merits of the primary deductive concept andΒ the general inductive concept reflects the tremendous work performed by mankindΒ in the course of history to identify stable patterns, sets of invariants (the allocationΒ of which is the basic condition for the development of intelligence) andΒ the corresponding forms of symmetry. That is, the forms of generalised symmetryΒ accumulate in a compact form all the available knowledge and serve as a tool developedΒ by society for systematising the phenomena and laws of the surroundingΒ reality. The examples convincingly demonstrated the integrative property of formsΒ of symmetry, manifested in the relationship between its principles, the laws of natureΒ and natural phenomena. The principles of symmetry set the structure to areasΒ of the laws of nature and natural phenomena, which, in turn, in the form ofΒ cross-cutting lines (according to V. S. Lednev) can determine the content of education.Β In addition, it justifies the expediency of introducing a special cross-cuttingΒ Symmetry line, consisting of a course system β apical elements, supplementedΒ by implicit elements scattered in courses of other cross-cutting lines. Such anΒ approach will eliminate the narrow specialisation in the learning process and avoidΒ fragmentary perception of educational information and the surrounding reality.Β Practical significance. The research materials presented in the publicationΒ can be useful both for scholars and educators, who study the content of education,Β as well as for practitioners involved in the selection of educational material inΒ the development of educational programmes at various levels.ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅. Π ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Π΄Π΅ΡΡΡΠΈΠ»Π΅ΡΠΈΡ Π² ΡΡΠ΅ΡΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡΒ ΡΠ΅Π·ΠΊΠΎ ΠΎΠ±ΠΎΡΡΡΠΈΠ»Π°ΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ° ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Ρ ΠΎΠ±ΡΡΠ°ΡΡΠΈΡ
ΡΡ ΡΠ΅Π»ΠΎΡΡΠ½ΠΎΠ³ΠΎ Π²ΠΎΡΠΏΡΠΈΡΡΠΈΡ ΠΎΠΊΡΡΠΆΠ°ΡΡΠ΅ΠΉ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ. ΠΠ°ΡΠ°ΡΠ΅Π½ΠΈΠ΅ Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ, Π²ΡΡΡΡΠΏΠ°ΡΡΠ΅Π³ΠΎ Π΄Π΅ΡΠ΅ΡΠΌΠΈΠ½Π°Π½ΡΠΎΠΌ ΡΡΡΡΠΊΡΡΡΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡΒ ΡΡΡΠ΅ΠΌΠΈΡΠ΅Π»ΡΠ½ΡΠΌΠΈ ΡΠ΅ΠΌΠΏΠ°ΠΌΠΈ. ΠΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ Π½Π΅ΠΏΠΎΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ, ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡΡΠ΅Π³ΠΎ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°ΡΡΡΡ ΠΎΠ±ΡΠ΅ΠΌΠ° ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠ΅Π΄ΡΡΠ²Π»ΡΠ΅ΡΡΡ Π΄Π»Ρ ΡΡΠ²ΠΎΠ΅Π½ΠΈΡ, Π½ΠΎ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΠΎΡΠΈΠ»Π΅Π½ ΡΡΠ°ΡΠΈΠΌΠΈΡΡ, Ρ Π½ΠΈΡ
Π²ΡΡΠ°Π±Π°ΡΡΠ²Π°ΡΡΡΡΒ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΠ΅ ΡΠΎΠ·Π½Π°Π½ΠΈΠ΅ ΠΈ ΠΌΡΡΠ»Π΅Π½ΠΈΠ΅, ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΡΠ΅ ΡΠ°Π·Π±Π°Π»Π°Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌΒ Π² ΡΡΠ΅Π±Π½ΡΡ
ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ°Ρ
ΡΡΠΎΠ²Π½Π΅ΠΉ ΠΈΠ½ΡΠ΅Π³ΡΠ°ΡΠΈΠΈ ΠΈ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°ΡΠΈΠΈ (Ρ ΠΊΡΠ΅Π½ΠΎΠΌΒ Π² ΡΡΠΎΡΠΎΠ½Ρ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅ΠΉ). Π§ΡΠΎΠ±Ρ ΠΊΠΎΠΌΠΏΠ΅Π½ΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠ»ΠΎΠΆΠΈΠ²ΡΠΈΠΉΡΡ Π΄ΠΈΡΠ±Π°Π»Π°Π½Ρ ΠΈ ΠΏΠ΅ΡΠ΅Π»ΠΎΠΌΠΈΡΡ ΠΎΠΏΠ°ΡΠ½ΡΡ ΡΠΈΡΡΠ°ΡΠΈΡ, ΡΠ³ΡΠΎΠΆΠ°ΡΡΡΡ ΠΎΠ±ΡΠ΅ΡΡΠ²Ρ ΠΊΡΠ°ΠΉΠ½Π΅ Π½Π΅Π³Π°ΡΠΈΠ²Π½ΡΠΌΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΠ²ΠΈΡΠΌΠΈ, ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΡΠ΅Π²ΠΈΠ·ΠΈΡ ΡΡΡΡΠΊΡΡΡΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΠΏΠΎΠΈΡΠΊΒ Π΅Π³ΠΎ Π½ΠΎΠ²ΡΡ
ΠΊΠΎΠ½ΡΠ΅ΠΏΡΡΠ°Π»ΡΠ½ΡΡ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ.Π¦Π΅Π»Ρ ΠΏΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΠΈ β ΠΏΠΎΠΊΠ°Π·Π°ΡΡ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅Π½ΠΎΠΌΠ΅Π½Π° ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ Π² ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ ΡΡΡΡΠΊΡΡΡ Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ ΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ. ΠΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡ Ρ ΠΎΠΏΠΎΡΠΎΠΉ Π½Π° ΠΈΠ΄Π΅ΠΎΠ»ΠΎΠ³ΠΈΡ ΠΡΠ»Π°Π½Π³Π΅Π½ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ Π€. ΠΠ»Π΅ΠΉΠ½Π°; ΡΡ
Π΅ΠΌΡ Π. ΠΠΈΠ³Π½Π΅ΡΠ°, ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ°ΡΡΡΡ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ Π½Π°ΡΡΠ½ΡΡ
Π·Π½Π°Π½ΠΈΠΉ; ΠΎΠ±ΠΎΠ±ΡΠ΅Π½Π½ΡΡ ΠΈΠ΄Π΅Ρ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈΒ Π. ΠΠ΅ΠΉΠ»Ρ; ΡΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½Π½ΡΠΉ Π. Π‘. ΠΠ΅Π΄Π½Π΅Π²ΡΠΌ Π»ΠΈΡΠ½ΠΎΡΡΠ½ΠΎ-Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠ½ΡΠΉΒ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ ΠΊ ΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ; Π° ΡΠ°ΠΊΠΆΠ΅ Π½Π° ΡΠ΅ΠΎΡΠ΅ΡΠΈΠΊΠΎ-ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· Π΄ΡΡΠ³ΠΈΡ
Π½Π°ΡΡΠ½ΡΡ
ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ², ΠΊΠ°ΡΠ°ΡΡΠΈΡ
ΡΡ ΠΎΠ±ΡΡΠΆΠ΄Π°Π΅ΠΌΠΎΠΉ ΡΠ΅ΠΌΡ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ Π½Π°ΡΡΠ½Π°Ρ Π½ΠΎΠ²ΠΈΠ·Π½Π°. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΡΠ½ΠΎΠ²Ρ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·Π°ΡΠΈΠΈΒ ΡΠ°Π·Π΄Π΅Π»ΠΎΠ² Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ ΠΈ ΡΡΡΡΠΊΡΡΡΠΈΡΡΡΡΠ΅Π³ΠΎ Π½Π°ΡΠ°Π»Π° ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Π΅ΡΡΡ ΠΎΠ±ΡΠ°Ρ ΠΈΠ΄Π΅Ρ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ, Π·Π°ΠΈΠΌΡΡΠ²ΠΎΠ²Π°Π½Π½Π°Ρ ΠΈΠ· Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ, Π½ΠΎ ΠΎΠ±Π»Π°Π΄Π°ΡΡΠ°Ρ ΡΠ΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ ΠΎΠ±ΡΠ΅ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ, Π° Π½Π΅ ΡΠ°ΡΡΠ½ΡΠΌΒ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΎΠΌ. Π‘ΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½ΡΡΡ Π΄ΠΎΡΡΠΎΠΈΠ½ΡΡΠ²Π° ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΠΎΠ³ΠΎ Π΄Π΅Π΄ΡΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ½ΡΡΠΈΡ ΠΈ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΈΠ½Π΄ΡΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ½ΡΡΠΈΡ ΠΎΡΡΠ°ΠΆΠ°Π΅Ρ Π³ΡΠΎΠΌΠ°Π΄Π½ΡΡ ΡΠ°Π±ΠΎΡΡ, ΠΏΡΠΎΠ΄Π΅Π»Π°Π½Π½ΡΡ ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΡΠ²ΠΎΠΌ Π² Ρ
ΠΎΠ΄Π΅ ΠΈΡΡΠΎΡΠΈΠΈ, ΠΏΠΎ Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ ΡΡΡΠΎΠΉΡΠΈΠ²ΡΡ
Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠ΅ΠΉ, Π½Π°Π±ΠΎΡΠΎΠ² ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² (Π²ΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΡΡ
ΡΠ²Π»ΡΠ΅ΡΡΡ Π±Π°Π·ΠΎΠ²ΡΠΌ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΠ°), ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ
ΡΠΎΡΠΌ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ. Π’ΠΎ Π΅ΡΡΡ ΡΠΎΡΠΌΡ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½Π½ΠΎΠΉ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ Π°ΠΊΠΊΡΠΌΡΠ»ΠΈΡΡΡΡ Π² ΠΊΠΎΠΌΠΏΠ°ΠΊΡΠ½ΠΎΠΌ Π²ΠΈΠ΄Π΅ Π²ΡΠ΅ ΠΈΠΌΠ΅ΡΡΠΈΠ΅ΡΡ Π·Π½Π°Π½ΠΈΡ ΠΈ ΡΠ»ΡΠΆΠ°Ρ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠΎΠΌ, Π²ΡΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠΌ ΡΠΎΡΠΈΡΠΌΠΎΠΌ Π΄Π»Ρ ΡΠΈΡΡΠ΅ΠΌΠ°ΡΠΈΠ·Π°ΡΠΈΠΈ ΡΠ²Π»Π΅Π½ΠΈΠΉ ΠΈ Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΎΠΊΡΡΠΆΠ°ΡΡΠ΅ΠΉ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ. ΠΠ° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ
ΡΠ±Π΅Π΄ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π½ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°ΡΠΈΠ²Π½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΎΡΠΌ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ, ΠΏΡΠΎΡΠ²Π»ΡΡΡΠ΅Π΅ΡΡ Π² ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡΡ
ΠΌΠ΅ΠΆΠ΄Ρ Π΅Π΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ°ΠΌΠΈ, Π·Π°ΠΊΠΎΠ½Π°ΠΌΠΈ ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΈ ΡΠ²Π»Π΅Π½ΠΈΡΠΌΠΈ ΠΏΡΠΈΡΠΎΠ΄Ρ. ΠΡΠΈΠ½ΡΠΈΠΏΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ Π·Π°Π΄Π°ΡΡ ΡΡΡΡΠΊΡΡΡΡ ΠΎΠ±Π»Π°ΡΡΡΠΌ Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΏΡΠΈΡΠΎΠ΄Ρ ΠΈ ΡΠ²Π»Π΅Π½ΠΈΠΉ ΠΏΡΠΈΡΠΎΠ΄Ρ, ΠΊΠΎΡΠΎΡΡΠ΅, Π² ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ, Π² Π²ΠΈΠ΄Π΅ ΡΠΊΠ²ΠΎΠ·Π½ΡΡ
Π»ΠΈΠ½ΠΈΠΉ (ΠΏΠΎ Π. Π‘. ΠΠ΅Π΄Π½Π΅Π²Ρ) ΠΌΠΎΠ³ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΠΎΠ±ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°Π΅ΡΡΡ ΡΠ΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΡΡΡ Π²Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ²ΠΎΠ·Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ Β«Π‘ΠΈΠΌΠΌΠ΅ΡΡΠΈΡΒ», ΡΠΎΡΡΠΎΡΡΠ΅ΠΉ ΠΈΠ· ΡΠΈΡΡΠ΅ΠΌΡ ΠΊΡΡΡΠΎΠ² β Π°ΠΏΠΈΠΊΠ°Π»ΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠΉ ΠΈΠΌΠΏΠ»ΠΈΡΠΈΡΠ½ΡΠΌΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ, ΡΠ°ΡΡΠ΅ΡΠ½Π½ΡΠΌΠΈ Π² ΠΊΡΡΡΠ°Ρ
Π΄ΡΡΠ³ΠΈΡ
ΡΠΊΠ²ΠΎΠ·Π½ΡΡ
Π»ΠΈΠ½ΠΈΠΉ. ΠΠΎΠ΄ΠΎΠ±Π½ΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ ΡΡΡΡΠ°Π½ΠΈΡΡ ΡΠ·ΠΊΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·Π°ΡΠΈΡ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΈ ΠΈΠ·Π±Π΅ΠΆΠ°ΡΡ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ°ΡΠ½ΠΎΡΡΠΈ Π²ΠΎΡΠΏΡΠΈΡΡΠΈΡ ΡΡΠ΅Π±Π½ΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΈ ΠΎΠΊΡΡΠΆΠ°ΡΡΠΈΡ
ΡΠ΅Π°Π»ΠΈΠΉ. ΠΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΡ. ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ, ΠΈΠ·Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π² ΠΏΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΠΈ, ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΏΠΎΠ»Π΅Π·Π½Ρ ΠΊΠ°ΠΊ Π΄Π»Ρ ΡΡΠ΅Π½ΡΡ
-ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΎΠ², ΠΈΠ·ΡΡΠ°ΡΡΠΈΡ
Π²ΠΎΠΏΡΠΎΡΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, ΡΠ°ΠΊ ΠΈ Π΄Π»Ρ ΠΏΡΠ°ΠΊΡΠΈΠΊΠΎΠ², Π·Π°Π½ΠΈΠΌΠ°ΡΡΠΈΡ
ΡΡ ΠΎΡΠ±ΠΎΡΠΎΠΌ ΡΡΠ΅Π±Π½ΠΎΠ³ΠΎΒ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΏΡΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΡ
ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌ ΡΠ°Π·Π½ΠΎΠ³ΠΎ ΡΡΠΎΠ²Π½Ρ
Natural-science education: scientific and religious knowledge correlation in the view of a symmetry principle. Ch. 2. Examples of religious content selection in general natural science courses based on the principle of symmetry
This work is aimed at demonstrating the possibility of the inclusion of religious elements contained in Holy Scripture and Holy Tradition in the general natural scientific courses based on the principle of symmetry. The method used in the work is confined to a comparison of perceptions formed in modern science and is closely related to the forms of symmetry and invariance principles (symmetry principles) and, in particular, space-time concepts with those of the Book of Genesis. Such a comparison reveals the following unexpected feature: most profound presentation of modern natural sciences is closer to the provisions of Holy Scripture and Holy Tradition than a look at the same things existed in the earlier stages of the development of science. This allows the authors to formulate the hypothesis that in the process of development of scientific knowledge, it gradually becomes closer to the religious worldview. This process is slow, so its results have become visible only within 3500 years after the establishment of the truth of the Old Testament and 2000 years after the New Testament.Results and scientific novelty. The Β«firmament of heavenΒ» and Β«water under the firmamentΒ» concepts are explained in the terms of the model of the Kleinert β Planck World crystal and understanding of the properties of matter and fields which are related with the conservation law of the wave-function parity. The relational nature of phenomena such as Β«lifeΒ» and Β«deathΒ» in the course of universe evolution as a general trend is considered as the process of lowering the degree of symmetry of matter after the Big Bang wherein the Universe was created. The concepts used by E. Wigner for the description of the structure of the scientific knowledge are analysed. Its structure is determined by shapes and specific principles of the symmetry of exact sciences. The analysis of the concept Β«natural phenomenonΒ» has shown that they are different in the degree of space-time localization. As the nonlocality of nature phenomenon becomes intensive, the limits of the scientific knowledge are approached. Understanding of creatures with the utmost degree of nonlocality is beyond the scientific knowledge. There is a tendency in modern science to study the behavior of objects in frames of nonlocal spacetime description. This trend is reflected, for example, in a study of the phenomenon of quantum entanglement. It can be stated that in this respect the position of science closes in the positions of the religious worldview. Practical significance. In this paper the authors present a few examples of selection of content of the course based on the Principle of symmetryΠ¦Π΅Π»ΡΡ Π²ΡΠΎΡΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΡΠ°ΡΡΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠ°ΡΠΈΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π² ΠΎΠ±ΡΠΈΠ΅ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ½Π°ΡΡΠ½ΡΠ΅ ΠΊΡΡΡΡ, ΠΏΠΎΡΡΡΠΎΠ΅Π½Π½ΡΠ΅ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ° ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ, ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² ΡΠ΅Π»ΠΈΠ³ΠΈΠΎΠ·Π½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅Π³ΠΎΡΡ Π² Π‘Π²ΡΡΠ΅Π½Π½ΠΎΠΌ ΠΠΈΡΠ°Π½ΠΈΠΈ ΠΈ Π‘Π²ΡΡΠ΅Π½Π½ΠΎΠΌ ΠΡΠ΅Π΄Π°Π½ΠΈΠΈ. ΠΠ΅ΡΠΎΠ΄, ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡΠΉ Π² ΡΠ°Π±ΠΎΡΠ΅, ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΊ ΡΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π² Π½Π°ΡΠΊΠ΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠ² ΠΈΠ½Π²Π°ΡΠΈΠ°Π½ΡΠ½ΠΎΡΡΠΈ (ΠΏΡΠΈΠ½ΡΠΈΠΏΠΎΠ² ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ) ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΠΎ ΡΠΎΡΠΌΠ°Ρ
ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅-Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, Ρ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΠΠ½ΠΈΠ³ΠΈ ΠΡΡΠΈΡ. Π’Π°ΠΊΠΎΠ΅ ΡΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π½Π΅ΠΎΠΆΠΈΠ΄Π°Π½Π½ΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΠ²Π°Π΅Ρ, ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π³Π»ΡΠ±ΠΎΠΊΠΈΠ΅ Π·Π½Π°Π½ΠΈΡ ΠΈΠ· ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
ΡΠΎΡΠ½ΡΡ
Π½Π°ΡΠΊ Π±Π»ΠΈΠΆΠ΅ ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡΠΌ Π‘Π²ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΠΈΡΠ°Π½ΠΈΡ, ΡΠ΅ΠΌ ΡΠ΅, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π»ΠΈ Π½Π° Π±ΠΎΠ»Π΅Π΅ ΡΠ°Π½Π½ΠΈΡ
ΡΡΠ°ΠΏΠ°Ρ
ΡΠ°Π·Π²ΠΈΡΠΈΡ Π½Π°ΡΠΊΠΈ. ΠΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π²ΡΠ΄Π²ΠΈΠ½ΡΡΡ Π³ΠΈΠΏΠΎΡΠ΅Π·Ρ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΠΏΠΎ ΠΌΠ΅ΡΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ ΠΏΠΎΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ Π΅Π³ΠΎ ΡΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ ΡΠ΅Π»ΠΈΠ³ΠΈΠΎΠ·Π½ΡΠΌ ΠΌΠΈΡΠΎΠ²ΠΎΠ·Π·ΡΠ΅Π½ΠΈΠ΅ΠΌ. Π’Π΅ΠΌΠΏ ΡΡΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΌΠ΅Π΄Π»Π΅Π½Π½ΡΠΉ, Π΅Π³ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΡΠ°Π½ΠΎΠ²ΡΡΡΡ Π·Π°ΠΌΠ΅ΡΠ½Ρ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ΅ΠΉΡΠ°Ρ, ΡΠ΅ΡΠ΅Π· 3500 Π»Π΅Ρ ΠΏΠΎΡΠ»Π΅ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΈΡΡΠΈΠ½ ΠΠ΅ΡΡ
ΠΎΠ³ΠΎ ΠΠ°Π²Π΅ΡΠ° ΠΈ ΡΠ΅ΡΠ΅Π· 2000 Π»Π΅Ρ β ΠΠΎΠ²ΠΎΠ³ΠΎ ΠΠ°Π²Π΅ΡΠ°. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ Π½Π°ΡΡΠ½Π°Ρ Π½ΠΎΠ²ΠΈΠ·Π½Π°. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΠΈΡΠΎΠ²ΠΎΠ³ΠΎ ΠΊΡΠΈΡΡΠ°Π»Π»Π° ΠΠ»ΡΠΉΠ½Π΅ΡΡΠ° β ΠΠ»Π°Π½ΠΊΠ° ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π°Ρ
Π²Π΅ΡΠ΅ΡΡΠ²Π° ΠΈ ΠΏΠΎΠ»Ρ, ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
Ρ Π·Π°ΠΊΠΎΠ½ΠΎΠΌ ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΠ½ΠΎΡΡΠΈ Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠΈΡΡΡΡΡΡ ΠΏΠΎΠ½ΡΡΠΈΡ Β«ΡΠ²Π΅ΡΠ΄Ρ Π½Π΅Π±Π΅ΡΠ½Π°ΡΒ» ΠΈ Β«Π²ΠΎΠ΄Ρ ΠΏΠΎΠ΄ ΡΠ²Π΅ΡΠ΄ΡΡΒ». ΠΡΠΎΡΠ΅ΡΡ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠΈ ΠΏΠΎΡΠ»Π΅ ΠΠΎΠ»ΡΡΠΎΠ³ΠΎ Π²Π·ΡΡΠ²Π°, Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π²ΠΎΠ·Π½ΠΈΠΊΠ»Π° ΠΡΠ΅Π»Π΅Π½Π½Π°Ρ, ΡΡΠ°ΠΊΡΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΠΎΠ±ΡΠ°Ρ ΡΠ΅Π½Π΄Π΅Π½ΡΠΈΡ Π΅Π΅ ΡΠ²ΠΎΠ»ΡΡΠΈΠΈ, ΡΠΊΠ°Π·ΡΠ²Π°ΡΡΠ°Ρ Π½Π° ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ ΡΠ°ΠΊΠΈΡ
ΡΠ΅Π½ΠΎΠΌΠ΅Π½ΠΎΠ², ΠΊΠ°ΠΊ Β«ΠΆΠΈΠ·Π½ΡΒ» ΠΈ Β«ΡΠΌΠ΅ΡΡΡΒ». ΠΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ ΠΏΠΎΠ½ΡΡΠΈΡ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π½ΡΠ΅ Π. ΠΠΈΠ³Π½Π΅ΡΠΎΠΌ ΠΏΡΠΈ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠΈ ΡΡΡΡΠΊΡΡΡΡ Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΡ Π΄Π΅ΡΠ΅ΡΠΌΠΈΠ½ΠΈΡΡΡΡ ΡΠΎΡΠΌΡ ΠΈ ΡΠ°ΡΡΠ½ΡΠ΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΡ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ ΡΠΎΡΠ½ΡΡ
Π½Π°ΡΠΊ. ΠΠ½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΡΡΡ ΠΏΠΎΠ½ΡΡΠΈΠ΅ Β«ΡΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΈΡΠΎΠ΄ΡΒ»; ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΡΠΈ ΡΠ²Π»Π΅Π½ΠΈΡ ΡΠ°Π·Π»ΠΈΡΠ°ΡΡΡΡ ΠΏΠΎ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎ-Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ. ΠΠΎ ΠΌΠ΅ΡΠ΅ ΡΡΠΈΠ»Π΅Π½ΠΈΡ ΠΈΡ
Π½Π΅Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΡΡΠΈ ΠΌΡ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ°Π΅ΠΌΡΡ ΠΊ Π³ΡΠ°Π½ΠΈΡΠ°ΠΌ Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ. Π‘ΡΡΠ½ΠΎΡΡΠΈ, ΠΈΠΌΠ΅ΡΡΠΈΠ΅ ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΡΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π½Π΅Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΡΡΠΈ, ΠΎΡΠ½ΠΎΡΡΡΡΡ ΠΊ ΠΎΠ±Π»Π°ΡΡΠΈ, Π»Π΅ΠΆΠ°ΡΠ΅ΠΉ Π·Π° ΡΡΠΈΠΌΠΈ Π³ΡΠ°Π½ΠΈΡΠ°ΠΌΠΈ. ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Ρ ΠΏΠΎΠ·ΠΈΡΠΈΠΉ Π½Π΅Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅Π½Π½ΠΎ-Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΡΠΈΠΊΡΠΈΡΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΠΎΠ΄Π½Π° ΠΈΠ· Π²Π΅Π΄ΡΡΠΈΡ
ΡΠ΅Π½Π΄Π΅Π½ΡΠΈΠΉ, Π½Π°ΠΌΠ΅ΡΠΈΠ²ΡΠΈΡ
ΡΡ Π² ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π½Π°ΡΠΊΠ΅. ΠΠ½Π° Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π² ΠΈΠ·ΡΡΠ΅Π½ΠΈΠΈ ΡΠ²Π»Π΅Π½ΠΈΡ ΠΊΠ²Π°Π½ΡΠΎΠ²ΠΎΠΉ Π·Π°ΠΏΡΡΠ°Π½Π½ΠΎΡΡΠΈ. ΠΠΎΠ½ΡΡΠ°ΡΠΈΡΡΠ΅ΡΡΡ, ΡΡΠΎ Π² ΡΡΠΎΠΌ ΡΠΌΡΡΠ»Π΅ Π½Π°ΡΠΊΠ° ΡΠ±Π»ΠΈΠΆΠ°Π΅ΡΡΡ Ρ ΡΠ΅Π»ΠΈΠ³ΠΈΠΎΠ·Π½ΡΠΌ ΠΌΠΈΡΠΎΠ²ΠΎΠ·Π·ΡΠ΅Π½ΠΈΠ΅ΠΌ. ΠΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΡ. Π ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΡΡ ΠΏΡΠΈΠΌΠ΅ΡΡ ΠΎΡΠ±ΠΎΡΠ° ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΎΠ±ΡΠ΅Π³ΠΎ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ½Π°ΡΡΠ½ΠΎΠ³ΠΎ ΠΊΡΡΡΠ° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ° ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΠΈ. Π’Π°ΠΊΠΎΠ΅ ΠΎΠ±Π½ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ ΠΊΡΡΡΠ°, ΠΏΠΎ ΠΌΠ½Π΅Π½ΠΈΡ Π°Π²ΡΠΎΡΠ°, Π΄Π΅Π»Π°Π΅Ρ Π΅Π³ΠΎ ΡΡΡΡΠΊΡΡΡΡ Π±ΠΎΠ»Π΅Π΅ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠΌ ΠΎΡΠΊΡΡΡΠΈΡΠΌ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠΈΠ·ΠΈΠΊ
Analysis of the Structure of Scientific Knowledge From Synergies
ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π°Π½Π°Π»ΠΈΠ·Π° ΡΡΡΡΠΊΡΡΡΡ Π½Π°ΡΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°Π½ΠΈΡ (Π΄Π΅ΡΠ΅ΡΠΌΠΈΠ½Π°Π½ΡΠ° ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ) Ρ ΠΏΠΎΠ·ΠΈΡΠΈΠΉ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΡΠΈΠ½Π΅ΡΠ³Π΅ΡΠΈΠΊΠΈ.The results of the analysis of the structure of scientific knowledge (determinant of the content of general education) from the viewpoints of synergetics are presented
Population of higher-energy levels in LiY_(1-x)Er_xF_4 (x=O.003 Γ·1) crystals under CW IR laser-diode pumping
Steady-state population of 7 lowest excited erbium. levels in LiY¬¬_(1-x)Er_xF_4 (YLF:Er^(3+) (x=0.003-1) crystals was studied under upconversion. CW InGaAs laser-diode pumping with varied power density. Theoretical and experimental concentration and power dependencies of population of higher-energy radiative levels were obtained. Relative changes in populations of studied levels in YLF:Er^(3+) crystals were experimentally controlled by visible spectra of steady-state luminescence in the wavelength ranges corresponding to transitions ^4S_(3/2) --> ^4I(15/2) (0.52--0.57) mum and ^4 F_(9/2) --> ^I_(15/2) (0.64--0.68) ¡m. IR-pumped luminescence kinetic curves of higher-energy transitions ^4S_(3/2) --> ^4I_(15/2) (0.55 ¡m) and ^2H_(9/2) --> ^4I_(15/2) (0.41 ¡m) were recorded. The energy-transfer mechanisms were determined, and the predominant mechanisms responsible for upconversion excitation were elucidated. Microparameters of energy transfer and concentration dependencies of the selfquenching rates and non-linear coupling were obtained on the basis of theoretical and experimental estimates of the rates of intra- and intercenter relaxation processes (migration, selfquenching, and upconversion) allowing for statistics of coupling between the impurity centers in the system. The steady-state dependencies of population on the erbium concentration and pumping power density were calculated within the framework of rate balance equations. Good agreement between the theory and experimental data was obtained
- β¦