3 research outputs found

    Enhancing photoelectrochemical CO2 reduction with silicon photonic crystals

    Get PDF
    The effectiveness of silicon (Si) and silicon-based materials in catalyzing photoelectrochemistry (PEC) CO2 reduction is limited by poor visible light absorption. In this study, we prepared two-dimensional (2D) silicon-based photonic crystals (SiPCs) with circular dielectric pillars arranged in a square array to amplify the absorption of light within the wavelength of approximately 450 nm. By investigating five sets of n + p SiPCs with varying dielectric pillar sizes and periodicity while maintaining consistent filling ratios, our findings showed improved photocurrent densities and a notable shift in product selectivity towards CH4 (around 25% Faradaic Efficiency). Additionally, we integrated platinum nanoparticles, which further enhanced the photocurrent without impacting the enhanced light absorption effect of SiPCs. These results not only validate the crucial role of SiPCs in enhancing light absorption and improving PEC performance but also suggest a promising approach towards efficient and selective PEC CO2 reduction

    Reduction of Ultrafiltration Membrane Fouling by the Pretreatment Removal of Emerging Pollutants: A Review

    No full text
    Ultrafiltration (UF) processes exhibit high removal efficiencies for suspended solids and organic macromolecules, while UF membrane fouling is the biggest obstacle affecting the wide application of UF technology. To solve this problem, various pretreatment measures, including coagulation, adsorption, and advanced oxidation, for application prior to UF processes have been proposed and applied in actual water treatment processes. Previously, researchers mainly focused on the contribution of natural macromolecular pollutants to UF membrane fouling, while the mechanisms of the influence of emerging pollutants (EPs) in UF processes (such as antibiotics, microplastics, antibiotic resistance genes, etc.) on membrane fouling still need to be determined. This review introduces the removal efficiency and separation mechanism for EPs for pretreatments combined with UF membrane separation technology and evaluates the degree of membrane fouling based on the UF membrane’s materials/pores and the structural characteristics of the cake layer. This paper shows that the current membrane separation process should be actively developed with the aim of overcoming specific problems in order to meet the technical requirements for the efficient separation of EPs
    corecore