6 research outputs found

    Glutathione de Novo Synthesis but Not Recycling Process Coordinates with Glutamine Catabolism to Control Redox Homeostasis and Directs Murine T Cell Differentiation

    Get PDF
    Upon antigen stimulation, T lymphocytes undergo dramatic changes in metabolism to fulfill the bioenergetic, biosynthetic and redox demands of proliferation and differentiation. Glutathione (GSH) plays an essential role in controlling redox balance and cell fate. While GSH can be recycled from Glutathione disulfide (GSSG), the inhibition of this recycling pathway does not impact GSH content and murine T cell fate. By contrast, the inhibition of the de novo synthesis of GSH, by deleting either the catalytic (Gclc) or the modifier (Gclm) subunit of glutamate–cysteine ligase (Gcl), dampens intracellular GSH, increases ROS, and impact T cell differentiation. Moreover, the inhibition of GSH de novo synthesis dampened the pathological progression of experimental autoimmune encephalomyelitis (EAE). We further reveal that glutamine provides essential precursors for GSH biosynthesis. Our findings suggest that glutamine catabolism fuels de novo synthesis of GSH and directs the lineage choice in T cells

    Improved RANSAC Point Cloud Spherical Target Detection and Parameter Estimation Method Based on Principal Curvature Constraint

    No full text
    Spherical targets are widely used in coordinate unification of large-scale combined measurements. Through its central coordinates, scanned point cloud data from different locations can be converted into a unified coordinate reference system. However, point cloud sphere detection has the disadvantages of errors and slow detection time. For this reason, a novel method of spherical object detection and parameter estimation based on an improved random sample consensus (RANSAC) algorithm is proposed. The method is based on the RANSAC algorithm. Firstly, the principal curvature of point cloud data is calculated. Combined with the k-d nearest neighbor search algorithm, the principal curvature constraint of random sampling points is implemented to improve the quality of sample points selected by RANSAC and increase the detection speed. Secondly, the RANSAC method is combined with the total least squares method. The total least squares method is used to estimate the inner point set of spherical objects obtained by the RANSAC algorithm. The experimental results demonstrate that the method outperforms the conventional RANSAC algorithm in terms of accuracy and detection speed in estimating sphere parameters

    6G Near-field Technologies White Paper

    No full text
    No abstract available
    corecore