55 research outputs found

    Interlaminar Shear Properties of Z-Pinned Carbon Fiber Reinforced Aluminum Matrix Composites by Short-Beam Shear Test

    No full text
    This paper presents the effect of through-thickness reinforcement by steel z-pins on the interlaminar shear properties and strengthening mechanisms of carbon fiber reinforced aluminum matrix composites (Cf/Al) with a short beam shear test method. Microstructural analysis reveals that z-pins cause minor microstructural damage including to fiber waviness and aluminum-rich regions, and interface reaction causes a strong interface between the stainless steel pin and the aluminum matrix. Z-pinned Cf/Al composites show reduced apparent interlaminar shear strength due to a change in the failure mode compared to unpinned specimens. The changed failure mode could result from decreased flexural strength due to microstructural damage as well as increased actual interlaminar shear strength. Fracture work is improved significantly with a z-pin diameter. The strong interface allows the deformation resistance of the steel pin to contribute to the crack bridging forces, which greatly enhances the interlaminar shear properties

    Effects of Fiber Volume Fraction and Length on the Mechanical Properties of Milled Glass Fiber/Polyurea Composites

    No full text
    Composites of polyurea (PU) reinforced with milled glass fiber (MGf) were fabricated. The volume fraction and length of the milled glass fiber were varied to study their effects on the morphological and mechanical properties of the MGf/PU composites. The morphological attributes were characterized with scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The SEM investigations revealed a uniform distribution and arbitrary orientation of milled glass fiber in the polyurea matrix. Moreover, it seems that the composites with longer fiber exhibit better interfacial bonding. It was found from the FTIR studies that the incorporation of milled glass fiber into polyurea leads to more phase mixing and decreases the hydrogen bonding of the polyurea matrix, while having a negligible effect on the H-bond strength. The compression tests at different strain rates (0.001, 0.01, 0.1, 1, 2000 and 3000 s−1) and dynamic mechanical properties over the temperature range from −30 to 100 °C at 1 Hz were performed. Experimental results show that the compressive behavior of MGf/PU composites is nonlinear and strain-rate-dependent. Both elastic modulus and flow stress at any given strain increased with strain rate. The composites with higher fiber volume fraction and longer fiber length are more sensitive to strain rate. Furthermore, the elastic modulus, stress at 65% strain and energy absorption capability were studied, taking into account both the effect of fiber volume fraction and mean fiber length. It is noted that an increase in fiber volume fraction and fiber length leads to an increase in elastic modulus, stress at 65% strain and absorbed energy up to ~103%, 83.0% and 137.5%, respectively. The storage and loss moduli of the composites also increase with fiber volume fraction and fiber length. It can be concluded that the addition of milled glass fiber into polyurea not only improves the stiffness of the composites but also increases their energy dissipative capability

    Microstructure and Flexural Properties of Z-Pinned Carbon Fiber-Reinforced Aluminum Matrix Composites

    No full text
    Z-pinning can significantly improve the interlaminar shear properties of carbon fiber-reinforced aluminum matrix composites (Cf/Al). However, the effect of the metal z-pin on the in-plane properties of Cf/Al is unclear. This study examines the effect of the z-pin on the flexural strength and failure mechanism of Cf/Al composites with different volume contents and diameters of the z-pins. The introduction of a z-pin leads to the formation of a brittle phase at the z-pin/matrix interface and microstructural damage such as aluminum-rich pockets and carbon fiber waviness, thereby resulting in a reduction of the flexural strength. The three-point flexural test results show that the adding of a metal z-pin results in reducing the Cf/Al composites’ flexural strength by 2–25%. SEM imaging of the fracture surfaces revealed that a higher degree of interfacial reaction led to more cracks on the surface of the z-pin. This crack-susceptible interface layer between the z-pin and the matrix is likely the primary cause of the reduction of the flexural strength

    A New Gas-Content-Evaluation Method for Organic-Rich Shale Using the Fractionation of Carbon Isotopes of Methane

    No full text
    Gas content is a key parameter for the determination of the gas resources in unconventional reservoirs. In this study, we propose a novel method to evaluate the gas content of shale through a new perspective: fractionation of carbon isotopes of methane. At first, a bicomponent gas-convection/diffusion/adsorption model (BG-CDAM) is successfully built with consideration of the flow and adsorption difference between (CH4)-C-13 and (CH4)-C-12 in the nanoporous shale. A detailed understanding of the mechanism of fractionation of the isotopes is obtained for the first time and the Knudsen-diffusivity difference is identified as the dominant factor for fractionation according to the different molecular weights of the isotopes. Then, the simulated results of BG-CDAM and the measured data from an isotope-logging test are combined to determine the unknown parameters for gas-content calculation. The proposed method for organic shale is valid and useful to obtain the quantitative component proportion in gas content, such as lost gas, degassing gas and residual gas, or free gas and adsorption gas. Thus, this method could provide a promising means for the identification of sweet spots in shale-gas reservoirs. Moreover, the method might have the potential to economically and rapidly evaluate the remaining resources in producing wells in future applications

    Effect of Microstructure on the Dimensional Stability of Extruded Pure Aluminum

    No full text
    High-performance extruded aluminum alloys with complex textures suffer significant dimension variation under environmental temperature fluctuations, dramatically decreasing the precision of navigation systems. This research mainly focuses on the effect of the texture of extruded pure aluminum on its dimensional stability after various annealing processes. The result reveals that a significant increment in the area fraction of recrystallized grains with <100> orientation and a decrement in the area fraction of grains with <111> orientation were found with increasing annealing temperature. Moreover, with the annealing temperature increasing from 150 °C to 400 °C, the residual plastic strain after twelve thermal cycles with a temperature range of 120 °C was changed from −1.6 × 10−5 to −4.5 × 10−5. The large amount of equiaxed grains with <100> orientation was formed in the microstructure of the extruded pure aluminum and the average grain size was decreased during thermal cycling. The area fraction of grain with <100> crystallographic orientation of the sample annealed at 400 °C after thermal cycling was 30.9% higher than annealed at 350 °C (23.7%) or at 150 °C (18.7%). It is attributed to the increase in the proportion of recrystallization grains with <100> direction as the annealing temperature increases, provided more nucleation sites for the formation of fine equiaxed grains with <100> orientation. The main orientation of the texture was rotated from parallel to <111> to parallel to <100> after thermal cycling. The change in the orientation of grains contributed to a change in interplanar spacing, which explains the change in the dimension along the extrusion direction during thermal cycling

    Microstructure and mechanical properties of Bp/Al neutron shielding composites

    No full text
    In this paper, a new type of neutron shielding material, boron particles reinforced Al composites (Bp/Al), was prepared by vacuum hot pressing method. Effect of volume fraction of boron particles and heat treatment on the microstructure and mechanical properties of the composites was studied. The results show that boron particles distribute uniformly in the composites and possess a good interface bonding with the matrix. Meanwhile, some boron particles react with Al matrix to form product AlB2 in the interfacial area. The bending strength of the composites first increases and then decreases as the volume fraction of boron particles increasing, and it also increases significantly after T6 treatment. The highest bending strength, 398 MPa, is obtained as the boron content is 30 vol%. Superabundant boron particles result in more micro-pores and micro-cracks through particle agglomeration and interfacial reaction. Therefore, the Bp/Al composites show brittle fracture when bearing excess external load
    • …
    corecore