8,383 research outputs found

    DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling

    Get PDF
    Face modeling has been paid much attention in the field of visual computing. There exist many scenarios, including cartoon characters, avatars for social media, 3D face caricatures as well as face-related art and design, where low-cost interactive face modeling is a popular approach especially among amateur users. In this paper, we propose a deep learning based sketching system for 3D face and caricature modeling. This system has a labor-efficient sketching interface, that allows the user to draw freehand imprecise yet expressive 2D lines representing the contours of facial features. A novel CNN based deep regression network is designed for inferring 3D face models from 2D sketches. Our network fuses both CNN and shape based features of the input sketch, and has two independent branches of fully connected layers generating independent subsets of coefficients for a bilinear face representation. Our system also supports gesture based interactions for users to further manipulate initial face models. Both user studies and numerical results indicate that our sketching system can help users create face models quickly and effectively. A significantly expanded face database with diverse identities, expressions and levels of exaggeration is constructed to promote further research and evaluation of face modeling techniques.Comment: 12 pages, 16 figures, to appear in SIGGRAPH 201

    Magnetic field-modulated exciton generation in organic semiconductors: an intermolecular quantum correlation effect

    Get PDF
    Magnetoelectroluminescence (MEL) of organic semiconductor has been experimentally tuned by adopting blended emitting layer consisting of both hole and electron transporting materials. A theoretical model considering intermolecular quantum correlation is proposed to demonstrate two fundamental issues: (1) two mechanisms, spin scattering and spin mixing, dominate the two different steps respectively in the process of the magnetic field modulated generation of exciton; (2) the hopping rate of carriers determines the intensity of MEL. Calculation successfully predicts the increase of singlet excitons in low field with little change of triplet exciton population.Comment: 16 pages, 4 figure

    Two variants on T2DM susceptible gene HHEX are associated with CRC risk in a Chinese population

    Get PDF
    Increasing amounts of evidence has demonstrated that T2DM (Type 2 Diabetes Mellitus) patients have increased susceptibility to CRC (colorectal cancer). As HHEX is a recognized susceptibility gene in T2DM, this work was focused on two SNPs in HHEX, rs1111875 and rs7923837, to study their association with CRC. T2DM patients without CRC (T2DM-only, n=300), T2DM with CRC (T2DM/CRC, n=135), cancer-free controls (Control, n=570), and CRC without T2DM (CRC-only, n=642) cases were enrolled. DNA samples were extracted from the peripheral blood leukocytes of the patients and sequenced by direct sequencing. The χ(2) test was used to compare categorical data. We found that in T2DM patients, rs1111875 but not the rs7923837 in HHEX gene was associated with the occurrence of CRC (p= 0.006). for rs1111875, TC/CC patients had an increased risk of CRC (p=0.019, OR=1.592, 95%CI=1.046-2.423). Moreover, our results also indicated that the two variants of HEEX gene could be risk factors for CRC in general population, independent on T2DM (p< 0.001 for rs1111875, p=0.001 for rs7923837). For rs1111875, increased risk of CRC was observed in TC or TC/CC than CC individuals (p<0.001, OR= 1.780, 95%CI= 1.385-2.287; p<0.001, OR= 1.695, 95%CI= 1.335-2.152). For rs7923837, increased CRC risk was observed in AG, GG, and AG/GG than AA individuals (p< 0.001, OR= 1.520, 95%CI= 1.200-1.924; p=0.036, OR= 1.739, 95%CI= 0.989-3.058; p< 0.001, OR= 1.540, 95%CI= 1.225-1.936). This finding highlights the potentially functional alteration with HHEX rs1111875 and rs7923837 polymorphisms may increase CRC susceptibility. Risk effects and the functional impact of these polymorphisms need further validation

    Nitrogen loss from karst area in China in recent 50 years: An in-situ simulated rainfall experiment's assessment

    Get PDF
    Karst topography covers more than 1/3 of the People's Republic of China in area. The porous, fissured, and soluble nature of the underlying karst bedrock (primarily dolomite and limestone) leads to the formation of underground drainage systems. Karst conduit networks dominate this system, and rainfall takes a crucial role on water cycle at China karst area. Nitrogen loss from the karst system is of particular concern, with regard to nutrient use efficiency as well as water quality, as much of the karst system, including steeply sloping terrain, is used for intensive agriculture. We use simulated rainfall experiments to determine the relationship between rainfall and nitrogen loss at typical karst slope land and then estimate nitrogen loss from the karst soil. The results show that both surface runoff and subsurface runoff have a significant linear correlation with rainfall at all studied sites. Subsurface runoff is larger than surface runoff at two karst sites, while the opposite is true at the non‐karst site. Exponential function satisfactorily described the correlation between rainfall and nitrogen concentrations in runoff. Nitrates accounted for 60%–95% of the dissolved nitrogen loss (DN, an index of N‐loss in this research). The estimated annual N‐loss load varies between 1.05 and 1.67 Tg N/year in the whole karst regions of China from 1961 to 2014. Approximately, 90% of the N‐loss load occurred during the wet season, and 90% of that passed through the subsurface. Understanding the processes and estimating N‐loss is highly valuable in determining long‐term soil security and sustainability in karst regions.&nbsp

    Bionic Optimization Design of Electronic Nose Chamber for Oil and Gas Detection

    Get PDF
    In this paper, a miniaturized bionic electronic nose system is developed in order to solve the problems arising in oil and gas detection for large size and inflexible operation in downhole. The bionic electronic nose chamber is designed by mimicking human nasal turbinate structure, V-groove structure on shark skin surface and flow field distribution around skin surface. The sensitivity of the bionic electronic nose system is investigated through experimentation. Radial Basis Function (RBF) and Support Vector Machines (SVM) of 10-fold cross validation are used to compare the recognition performance of the bionic electronic nose system and common one. The results show that the sensitivity of the bionic electronic nose system with bionic composite chamber (chamber B) is significantly improved compared with that with common chamber (chamber A). The recognition rate of chamber B is 4.27% higher than that of chamber A for the RBF algorithm, while for the SVM algorithm, the recognition rate of chamber B is 5.69% higher than that of chamber A. The three-dimensional simulation model of the chamber is built and verified by Computational Fluid Dynamics (CFD) simulation analysis The number of vortices in chamber B is fewer than that in chamber A. The airflow velocity near the sensors inside chamber B is slower than that inside chamber A. The vortex intensity near the sensors in chamber B is 2. 27 times as much as that in chamber A, which facilitates gas molecules to fully contact with the sensor surface and increases the intensity of sensor signal, and the contact strength and time between odorant molecules and sensor surface. Based on the theoretical investigation and test validation, it is believed that the proposed bionic electronic nose system with bionic composite chamber has potential for oil and gas detection in downhole

    Clinical Study Recombinant Brain Natriuretic Peptide for the Prevention of Contrast-Induced Nephropathy in Patients with Chronic Kidney Disease Undergoing Nonemergent Percutaneous Coronary Intervention or Coronary Angiography: A Randomized Controlled Tria

    Get PDF
    The role of brain natriuretic peptide (BNP) in the prevention of contrast-induced nephropathy (CIN) is unknown. This study aimed to investigate BNP&apos;s effect on CIN in chronic kidney disease (CKD) patients undergoing elective percutaneous coronary intervention (PCI) or coronary angiography (CAG). The patients were randomized to BNP (0.005 g/kg/min before contrast media (CM) exposure and saline hydration, = 106) or saline hydration alone ( = 103). Cystatin C, serum creatinine (SCr) levels, and estimated glomerular filtration rates (eGFR) were assessed at several time points. The primary endpoint was CIN incidence; secondary endpoint included changes in cystatin C, SCr, and eGFR. CIN incidence was significantly lower in the BNP group compared to controls (6.6% versus 16.5%, = 0.025). In addition, a more significant deterioration of eGFR, cystatin C, and SCr from 48 h to 1 week ( &lt; 0.05) was observed in controls compared to the BNP group. Although eGFR gradually deteriorated in both groups, a faster recovery was achieved in the BNP group. Multivariate logistic regression revealed that using &gt;100 mL of CM (odds ratio: 4.36, = 0.004) and BNP administration (odds ratio: 0.21, = 0.006) were independently associated with CIN. Combined with hydration, exogenous BNP administration before CM effectively decreases CIN incidence in CKD patients
    • 

    corecore