47,580 research outputs found
Topological quantum phase transitions and edge states in spin-orbital coupled Fermi gases
We study the superconducting state in the presence of spin-orbital coupling
and the Zeeman field. It is found that a phase transition from the
Fulde-Ferrell-Larkin-Ovchinnikov state to the topological superconducting state
occurs upon increasing the spin-orbital coupling. The nature of this
topological phase transition and its critical property are investigated
numerically. Physical properties of topological superconducting phase are also
explored. Moreover, the local density of states is calculated, through which
the topological feature may be tested experimentally.Comment: 11 pages, 8 figure
Human African trypanosomiasis : the current situation in endemic regions and the risks for non-endemic regions from imported cases
Human African trypanosomiasis (HAT) is caused by Trypanosoma brucei
gambiense and T. b. rhodesiense and caused devastating epidemics during the 20th
century. Due to effective control programs implemented in the last two decades, the
number of reported cases has fallen to a historically low level. Although fewer than
977 cases were reported in 2018 in endemic countries, HAT is still a public health
problem in endemic regions until it is completely eliminated. In addition, almost 150
confirmed HAT cases were reported in non-endemic countries in the last three
decades. The majority of non-endemic HAT cases were reported in Europe, United
States and South Africa, due to historical alliances, economic links or geographic
proximity to disease endemic countries. Furthermore, with the implementation of the
“Belt and Road” project, sporadic imported HAT cases have been reported in China
as a warning sign of tropical diseases prevention. In this paper, we explore and
interpret the data on HAT incidence and find no positive correlation between the
number of HAT cases from endemic and non-endemic countries.This data will
provide useful information for better understanding the imported cases of HAT
globally in the post-elimination phase
Combining Models of Approximation with Partial Learning
In Gold's framework of inductive inference, the model of partial learning
requires the learner to output exactly one correct index for the target object
and only the target object infinitely often. Since infinitely many of the
learner's hypotheses may be incorrect, it is not obvious whether a partial
learner can be modifed to "approximate" the target object.
Fulk and Jain (Approximate inference and scientific method. Information and
Computation 114(2):179--191, 1994) introduced a model of approximate learning
of recursive functions. The present work extends their research and solves an
open problem of Fulk and Jain by showing that there is a learner which
approximates and partially identifies every recursive function by outputting a
sequence of hypotheses which, in addition, are also almost all finite variants
of the target function.
The subsequent study is dedicated to the question how these findings
generalise to the learning of r.e. languages from positive data. Here three
variants of approximate learning will be introduced and investigated with
respect to the question whether they can be combined with partial learning.
Following the line of Fulk and Jain's research, further investigations provide
conditions under which partial language learners can eventually output only
finite variants of the target language. The combinabilities of other partial
learning criteria will also be briefly studied.Comment: 28 page
Can the Bump be Observed in the Early Afterglow of GRBS with X-Ray Line Emission Features?
Extremely powerful emission lines are observed in the X-ray afterglow of
several GRBs. The energy contained in the illuminating continuum which is
responsible for the line production exceeds 10 erg, much higher than
that of the collimated GRBs. It constrains the models which explain the
production of X-ray emission lines. In this paper, We argue that this energy
can come from a continuous postburst outflow. Focusing on a central engine of
highly magnetized millisecond pulsar or magnetar we find that afterglow can be
affected by the illuminating continuum, and therefore a distinct achromatic
bump may be observed in the early afterglow lightcurves. With the luminosity of
the continuous outflow which produces the line emission, we define the upper
limit of the time when the bump feature appears. We argue that the reason why
the achromatic bumps have not been detected so far is that the bumps should
appear at the time too early to be observed.Comment: 13 pags, 2 tables, appear in v603 n1 pt1 ApJ March 1, 2004 issu
- …