60 research outputs found
A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles
In recent years, there has been a dramatic increase in the use of unmanned
aerial vehicles (UAVs), particularly for small UAVs, due to their affordable
prices, ease of availability, and ease of operability. Existing and future
applications of UAVs include remote surveillance and monitoring, relief
operations, package delivery, and communication backhaul infrastructure.
Additionally, UAVs are envisioned as an important component of 5G wireless
technology and beyond. The unique application scenarios for UAVs necessitate
accurate air-to-ground (AG) propagation channel models for designing and
evaluating UAV communication links for control/non-payload as well as payload
data transmissions. These AG propagation models have not been investigated in
detail when compared to terrestrial propagation models. In this paper, a
comprehensive survey is provided on available AG channel measurement campaigns,
large and small scale fading channel models, their limitations, and future
research directions for UAV communication scenarios
Uniform Asymptotics for a Delay-Claims Risk Model with Constant Force of Interest and By-Claims Arriving according to a Counting Process
The insurance risk model involving main claims and by-claims has been traditionally studied under the assumption that every main claim may be accompanied with a by-claim occurring after a period of delay, but in reality each main claim can cause many by-claims arriving according to a counting process. To this end, we construct a new insurance risk model that is also perturbed by diffusion with constant force of interest. In the presence of heavy tails and dependence structures among modelling components, we obtain some asymptotic results for the finite-time ruin probability and the tail probability of discounted aggregate claims, where the results hold uniformly for all times in a finite or infinite interval
Asymptotic tail probability of weighted infinite sum of conditionally dependent and consistently varying tailed random variables
Abstract This paper investigates the asymptotic behavior of the tail probability of a weighted infinite sum of random variables with consistently varying tails under two conditional dependence structures. The obtained results extend and improve the existing results of Bae and Ko (J. Korean Stat. Soc. 46:321–327, 2017)
An Optimization-Based Initial Alignment and Calibration Algorithm of Land-Vehicle SINS In-Motion
For a running freely land-vehicle strapdown inertial navigation system (SINS), the problems of self-calibration and attitude alignment need to be solved simultaneously. This paper proposes a complete alignment algorithm for the land vehicle navigation using Inertial Measurement Units (IMUs) and an odometer. A self-calibration algorithm is proposed based on the global observability analysis to calibrate the odometer scale factor and IMU misalignment angle, and the initial alignment and calibration method based on optimal algorithm is established to estimate the attitude and other system parameters. This new algorithm has the capability of self-initialization and calibration without any prior attitude and sensor noise information. Computer simulation results show that the performance of the proposed algorithm is superior to the extended Kalman filter (EKF) method during the oscillating attitude motions, and the vehicle test validates its advantages
- …