249 research outputs found
Robust finite-time fault estimation for stochastic nonlinear systems with Brownian motions
Motivated by real-time monitoring and fault diagnosis for complex systems, the presented paper aims to develop effective fault estimation techniques for stochastic nonlinear systems subject to partially decoupled unknown input disturbances and Brownian motions. The challenge of the research is how to ensure the robustness of the proposed fault estimation techniques against stochastic Brownian perturbations and additive process disturbances, and provide a rigorous mathematical proof of the finite-time input-to-stabilization of the estimation error dynamics. In this paper, stochastic input-to-state stability and finite-time stochastic input-to-state stability of stochastic nonlinear systems are firstly investigated based on Lyapunov theory, leading to simple and straightforward criteria. By integrating augmented system approach, unknown input observer technique, and finite-time stochastic input-to-state stability theory, a highly-novel fault estimation technique is proposed. The convergence of the estimation error with respect to un-decoupled unknown inputs and Brownian perturbations is proven by using the derived stochastic input-to-state stability and finite-time stochastic input-to-state stability theorems. Based on linear matrix inequality technique, the robust observer gains can be obtained in order to achieve both stability and robustness of the error dynamic. Finally, the effectiveness of the proposed fault estimation techniques is demonstrated by the detailed simulation studies using a robotic system and a numerical example
Robust Fault Tolerant Control for Discrete-Time Dynamic Systems With Applications to Aero Engineering Systems
Unexpected faults in actuators and sensors may degrade the reliability and safety of aero engineering systems. Therefore, there is motivation to develop integrated fault tolerant control techniques with applications to aero engineering systems. In this paper, discrete-time dynamic systems, in the presence of simultaneous actuator/sensor faults, partially decoupled unknown input disturbances, and sensor noises, are investigated. A jointly state/fault estimator is formulated by integrating an unknown input observer, augmented system approach, and optimization algorithm. Unknown input disturbances can be either decoupled by an unknown input observer, or attenuated by a linear matrix inequality optimization, enabling the estimation error to be input-to-state stable. Estimator-based signal compensation is then implemented to mitigate adverse effects from the unanticipated actuator and sensor faults. A pre-designed controller, which maintains normal system behaviors under a fault-free scenario, is allowed to work along with the presented fault tolerant mechanism of the signal compensations. The fault-tolerant closed-loop system can be ensured to mitigate the effects from the faults, guarantee the input-to-state stability, and satisfy the required robustness performance. The proposed fault estimation and fault tolerant control methods are developed for both discrete-time linear and discrete-time Lipschitz nonlinear systems. Finally, the proposed techniques are applied to a jet engine system and a flight control system for simulation validation
Robust fault estimation for stochastic Takagi-Sugeno fuzzy systems
Nowadays, industrial plants are calling for high-performance fault diagnosis techniques to meet stringent requirements on system availability and safety in the event of component failures. This paper deals with robust fault estimation problems for stochastic nonlinear systems subject to faults and unknown inputs relying on Takagi-Sugeno fuzzy models. Augmented approach jointly with unknown input observers for stochastic Takagi-Sugeno models is exploited here, which allows one to estimate both considered faults and full system states robustly. The considered unknown inputs can be either completely decoupled or partially decoupled by observers. For the un-decoupled part of unknown inputs, which still influence error dynamics, stochastic input-to-state stability properties are applied to take nonzero inputs into account and sufficient conditions are achieved to guarantee bounded estimation errors under bounded unknown inputs. Linear matrix inequalities are employed to compute gain matrices of the observer, leading to stochastic input-to-state-stable error dynamics and optimization of the estimation performances against un-decoupled unknown inputs. Finally, simulation on wind turbine benchmark model is applied to validate the performances of the suggested fault reconstruction methodologies
An Overview on Fault Diagnosis, Prognosis and Resilient Control for Wind Turbine Systems
Wind energy is contributing to more and more portions in the world energy market. However, one deterrent to even greater investment in wind energy is the considerable failure rate of turbines. In particular, large wind turbines are expensive, with less tolerance for system performance degradations, unscheduled system shut downs, and even system damages caused by various malfunctions or faults occurring in system components such as rotor blades, hydraulic systems, generator, electronic control units, electric systems, sensors, and so forth. As a result, there is a high demand to improve the operation reliability, availability, and productivity of wind turbine systems. It is thus paramount to detect and identify any kinds of abnormalities as early as possible, predict potential faults and the remaining useful life of the components, and implement resilient control and management for minimizing performance degradation and economic cost, and avoiding dangerous situations. During the last 20 years, interesting and intensive research results were reported on fault diagnosis, prognosis, and resilient control techniques for wind turbine systems. This paper aims to provide a state-of-the-art overview on the existing fault diagnosis, prognosis, and resilient control methods and techniques for wind turbine systems, with particular attention on the results reported during the last decade. Finally, an overlook on the future development of the fault diagnosis, prognosis, and resilient control techniques for wind turbine systems is presented
A Deep Learning-Based Fault Diagnosis of Leader-Following Systems
This paper develops a multisensor data fusion-based deep learning algorithm to locate and classify faults in a leader-following multiagent system. First, sequences of one-dimensional data collected from multiple sensors of followers are fused into a two-dimensional image. Then, the image is employed to train a convolution neural network with a batch normalisation layer. The trained network can locate and classify three typical fault types: the actuator limitation fault, the sensor failure and the communication failure. Moreover, faults can exist in both leaders and followers, and the faults in leaders can be identified through data from followers, indicating that the developed deep learning fault diagnosis is distributed. The effectiveness of the deep learning-based fault diagnosis algorithm is demonstrated via Quanser Servo 2 rotating inverted pendulums with a leader-follower protocol. From the experimental results, the fault classification accuracy can reach 98.9%
- …