73,673 research outputs found
Environment identification based memory scheme for estimation of distribution algorithms in dynamic environments
Copyright @ Springer-Verlag 2010.In estimation of distribution algorithms (EDAs), the joint probability distribution of high-performance solutions is presented by a probability model. This means that the priority search areas of the solution space are characterized by the probability model. From this point of view, an environment identification-based memory management scheme (EI-MMS) is proposed to adapt binary-coded EDAs to solve dynamic optimization problems (DOPs). Within this scheme, the probability models that characterize the search space of the changing environment are stored and retrieved to adapt EDAs according to environmental changes. A diversity loss correction scheme and a boundary correction scheme are combined to counteract the diversity loss during the static evolutionary process of each environment. Experimental results show the validity of the EI-MMS and indicate that the EI-MMS can be applied to any binary-coded EDAs. In comparison with three state-of-the-art algorithms, the univariate marginal distribution algorithm (UMDA) using the EI-MMS performs better when solving three decomposable DOPs. In order to understand the EI-MMS more deeply, the sensitivity analysis of parameters is also carried out in this paper.This work was supported by the National
Nature Science Foundation of China (NSFC) under Grant 60774064, the Engineering and Physical Sciences Research Council (EPSRC) of
UK under Grant EP/E060722/01
Simulating California reservoir operation using the classification and regression-tree algorithm combined with a shuffled cross-validation scheme
The controlled outflows from a reservoir or dam are highly dependent on the decisions made by the reservoir operators, instead of a natural hydrological process. Difference exists between the natural upstream inflows to reservoirs and the controlled outflows from reservoirs that supply the downstream users. With the decision maker's awareness of changing climate, reservoir management requires adaptable means to incorporate more information into decision making, such as water delivery requirement, environmental constraints, dry/wet conditions, etc. In this paper, a robust reservoir outflow simulation model is presented, which incorporates one of the well-developed data-mining models (Classification and Regression Tree) to predict the complicated human-controlled reservoir outflows and extract the reservoir operation patterns. A shuffled cross-validation approach is further implemented to improve CART's predictive performance. An application study of nine major reservoirs in California is carried out. Results produced by the enhanced CART, original CART, and random forest are compared with observation. The statistical measurements show that the enhanced CART and random forest overperform the CART control run in general, and the enhanced CART algorithm gives a better predictive performance over random forest in simulating the peak flows. The results also show that the proposed model is able to consistently and reasonably predict the expert release decisions. Experiments indicate that the release operation in the Oroville Lake is significantly dominated by SWP allocation amount and reservoirs with low elevation are more sensitive to inflow amount than others
The anatomy of teleneurosurgery in China
With its huge population and vast territory, China faces a great challenge in providing modern advanced health care services to all parts of the country. The advances of information communication technologies (ICTs) and the advent of internet have revolutionised the means in the delivery of healthcare via telemedicine to remote and underserved populations, which to a certain extent has been very well exploited in China, especially where 70% peasants residing in the rural areas. This paper reviews the latest development in telemedicine infrastructure in China with the focus on the development of teleneurosurgery, drawing from the results gained from a 3-year networking project between Europe and China on telemedicine (TIME, 2005–2007) funded by European Commission under Asia ICT programme, with an aim to shape up envisages of future medical care in China. Comparison with its counterparts in Europe is also addressed
Recommended from our members
Modeling and analysis of the variability of the water cycle in the upper Rio Grande basin at high resolution
Estimating the water budgets in a small-scale basin is a challenge, especially in the mountainous western United States, where the terrain is complex and observational data in the mountain areas are sparse. This manuscript reports on research that downscaled 5-yr (1999-2004) hydrometeorological fields over the upper Rio Grande basin from a 2.5° NCEP-NCAR reanalysis to a 4-km local scale using a regional climate model [fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5), version 3]. The model can reproduce the terrain-related precipitation distribution - the trend of diurnal, seasonal, and interannual precipitation variability - although poor snow simulation caused it to overestimate precipitation and evapotranspiration in the cold season. The outcomes from the coupled model are also comparable to offline Variable Infiltration Capacity (VIC) and Land Data Assimilation System (LDAS)/Mosaic land surface simulations that are driven by observed and/or analyzed surface meteorological data. © 2007 American Meteorological Society
Recommended from our members
Modeling intraseasonal features of 2004 North American monsoon precipitation
This study examines the capabilities and limitations of the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model (MM5) in predicting the precipitation and circulation features that accompanied the 2004 North American monsoon (NAM). When the model is reinitialized every 5 days to restrain the growth of modeling errors, its results for precipitation checked at subseasonal time scales (not for individual rainfall events) become comparable with ground- and satellite-based observations as well as with the NAM's diagnostic characteristics. The modeled monthly precipitation illustrates the evolution patterns of monsoon rainfall, although it underestimates the rainfall amount and coverage area in comparison with observations. The modeled daily precipitation shows the transition from dry to wet episodes on the monsoon onset day over the Arizona-New Mexico region, and the multiday heavy rainfall (>1 mm day-1) and dry periods after the onset. All these modeling predictions agree with observed variations. The model also accurately simulated the onset and ending dates of four major moisture surges over the Gulf of California during the 2004 monsoon season. The model reproduced the strong diurnal variability of the NAM precipitation, but did not predict the observed diurnal feature of the precipitation peak's shift from the mountains to the coast during local afternoon to late night. In general, the model is able to reproduce the major, critical patterns and dynamic variations of the NAM rainfall at intraseasonal time scales, but still includes errors in precipitation quantity, pattern, and timing. The numerical study suggests that these errors are due largely to deficiencies in the model's cumulus convective parameterization scheme, which is responsible for the model's precipitation generation. © 2007 American Meteorological Society
A new evolutionary search strategy for global optimization of high-dimensional problems
Global optimization of high-dimensional problems in practical applications remains a major challenge to the research community of evolutionary computation. The weakness of randomization-based evolutionary algorithms in searching high-dimensional spaces is demonstrated in this paper. A new strategy, SP-UCI is developed to treat complexity caused by high dimensionalities. This strategy features a slope-based searching kernel and a scheme of maintaining the particle population's capability of searching over the full search space. Examinations of this strategy on a suite of sophisticated composition benchmark functions demonstrate that SP-UCI surpasses two popular algorithms, particle swarm optimizer (PSO) and differential evolution (DE), on high-dimensional problems. Experimental results also corroborate the argument that, in high-dimensional optimization, only problems with well-formative fitness landscapes are solvable, and slope-based schemes are preferable to randomization-based ones. © 2011 Elsevier Inc. All rights reserved
- …