82,503 research outputs found

    Symplectic formulation of the type IIA nongeometric scalar potential

    Full text link
    We study the four-dimensional (4D) scalar potential arising from a generalized type IIA flux superpotential including the (non-)geometric fluxes. First, we show that using a set of peculiar flux combinations, the 4D scalar potential can be formulated into a very compact form. This is what we call as the `symplectic formulation' from which one could easily anticipate the ten-dimensional origin of the effective scalar potential. We support our formulation through an alternate derivation of the scalar potential via considering the Double Field Theory (DFT) reduction on a generic Calabi Yau orientifold. In addition, we also exemplify the insights of our formulation with explicit computations for two concrete toroidal examples using orientifolds of the complex threefolds T6/(Z2×Z2){\mathbb T}^6/{({\mathbb Z}_2 \times {\mathbb Z}_2)} and T6/Z4{\mathbb T}^6/{\mathbb Z}_4.Comment: v4: 33 pages, typos fixed in eqn. (4.22) and (4.23), and some cosmetic changes in the title; version to appear in PR

    Broadband Epsilon-Near-Zero Metamaterials with Step-Like Metal-Dielectric Multilayer Structures

    Full text link
    The concept of the broadband epsilon-near-zero meta-atom consisting of layered stacks with specified metallic filling ratio and thickness is proposed based on the Bergman spectral representation of the effective permittivity. The step-like metal-dielectric multilayer structures are designed to achieve realistic broadband epsilon-near-zero meta-atoms in optical frequency range. These meta-atoms can be integrated as building blocks for unconventional optical components with exotic electromagnetic properties over a wide frequency range, such as the demonstrated broadband directional emission and phase front shaping.Comment: 18 pages, 7 figure

    Realizing broadband electromagnetic transparency with a graded-permittivity sphere

    Full text link
    Broadband electromagnetic transparency phenomenon is realized with a well-designed graded-permittivity sphere, which has an extremely low scattering cross section over a wide frequency range, based on the generalized Mie scattering theory and numerical simulation in full-wave condition. The dynamic polarization cancellation is revealed by studying the variation of the polarization with respect to the frequency. Furthermore, a properly-designed multi-shell sphere is also proposed and examined in order to reduce the rigorous conditions for realizing the broadband transparency in experiments.Comment: 15 pages, 4 figure

    On Missing Bianchi Identities in Cohomology Formulation

    Full text link
    In this article, we perform a deep analysis of the Bianchi identities in the two known formulations developed for the four-dimensional effective type IIA supergravity theory with (non-)geometric fluxes. In what we call the `first formulation', fluxes are expressed in the real six-dimensional indices while in the `second formulation', fluxes are written in the cohomology form. We find that the set of flux constraints arising from these two known formulations are not equivalent, and there are missing identities in the cohomology version which need to be supplemented to match with the first formulation. By analyzing two explicit examples, we conjecture a model independent form for (the most of) the missing identities. These identities have been mostly overlooked in the previous attempts of studying moduli stabilization, particularly for the models developed in the beyond toroidal frameworks, where they could play some important role.Comment: v2: 24 pages + 3 appendices, minor improvements and references added. arXiv admin note: text overlap with arXiv:1712.07310; v3: minor updates, published versio
    • …
    corecore