682 research outputs found

    Phantom Cosmology with Non-minimally Coupled Real Scalar Field

    Full text link
    We find that the expansion of the universe is accelerating by analyzing the recent observation data of type \textsc{I}a supernova(SN-Ia) .It indicates that the equation of state of the dark energy might be smaller than -1,which leads to the introduction of phantom models featured by its negative kinetic energy to account for the regime of equation of state parameter w<1w<-1.In this paper the possibility of using a non-minimally coupled real scalar field as phantom to realize the equation of state parameter w<1w<-1 is discussed.The main equations which govern the evolution of the universe are obtained.Then we rewrite them with the observable quantities.Comment: 12 pages, 2 figures. Accepted for publication in Gen.Rel.Gra

    Can black holes be torn up by phantom dark energy in cyclic cosmology?

    Full text link
    Infinitely cyclic cosmology is often frustrated by the black hole problem. It has been speculated that this obstacle in cyclic cosmology can be removed by taking into account a peculiar cyclic model derived from loop quantum cosmology or the braneworld scenario, in which phantom dark energy plays a crucial role. In this peculiar cyclic model, the mechanism of solving the black hole problem is through tearing up black holes by phantom. However, using the theory of fluid accretion onto black holes, we show in this paper that there exists another possibility: that black holes cannot be torn up by phantom in this cyclic model. We discussed this possibility and showed that the masses of black holes might first decrease and then increase, through phantom accretion onto black holes in the expanding stage of the cyclic universe.Comment: 6 pages, 2 figures; discussions adde

    Refractive elastic scattering of carbon and oxygen nuclei: The mean field analysis and Airy structures

    Full text link
    The experimental data on the 16^{16}O+12+^{12}C and 18^{18}O+12+^{12}C elastic scatterings and their optical model analysis are presented. Detailed and complete elastic angular distributions have been measured at the Strasbourg Vivitron accelerator at several energies covering the energy range between 5 and 10 MeV per nucleon. The elastic scattering angular distributions show the usual diffraction pattern and also, at larger angles, refractive effects in the form of nuclear rainbow and associated Airy structures. The optical model analysis unambiguously shows the evolution of the refractive scattering pattern. The observed structure, namely the Airy minima, can be consistently described by a nucleus-nucleus potential with a deep real part and a weakly absorptive imaginary part. The difference in absorption in the two systems is explained by an increased imaginary (mostly surface) part of the potential in the 18^{18}O+12+^{12}C system. The relation between the obtained potentials and those reported for the symmetrical 16^{16}O+16+^{16}O and 12^{12}C+12+^{12}C systems is drawn.Comment: 10 pages, 9 figures, Phys. rev. C in pres

    (Twisted) Toroidal Compactification of pp-Waves

    Full text link
    The maximally supersymmetric type IIB pp-wave is compactified on spatial circles, with and without an auxiliary rotational twist. All spatial circles of constant radius are identified. Without the twist, an S1^1 compactification can preserve 24, 20 or 16 supercharges. T2T^2 compactifications can preserve 20, 18 or 16 supercharges; T3T^3 compactifications can preserve 18 or 16 supercharges and higher compactifications preserve 16 supercharges. The worldsheet theory of this background is discussed. The T-dual and decompactified type IIA and M-theoretic solutions which preserve 24 supercharges are given. Some comments are made regarding the AdS parent and the CFT description.Comment: 22 pages REVTeX 4 and AMSLaTeX. v3: References and a paragraph on nine dimensional Killing spinors were added. v4: A few typos corrected and a footnote was modifie

    Non-minimal kinetic coupling and Chaplygin gas cosmology

    Full text link
    In the frame of the scalar field model with non minimal kinetic coupling to gravity, we study the cosmological solutions of the Chaplygin gas model of dark energy. By appropriately restricting the potential, we found the scalar field, the potential and coupling giving rise to the Chaplygin gas solution. Extensions to the generalized and modified Chaplygin gas have been made.Comment: 18 pages, 2 figures. To appear in EPJ

    Isotopic and spin selectivity of H_2 adsorbed in bundles of carbon nanotubes

    Full text link
    Due to its large surface area and strongly attractive potential, a bundle of carbon nanotubes is an ideal substrate material for gas storage. In addition, adsorption in nanotubes can be exploited in order to separate the components of a mixture. In this paper, we investigate the preferential adsorption of D_2 versus H_2(isotope selectivity) and of ortho versus para(spin selectivity) molecules confined in the one-dimensional grooves and interstitial channels of carbon nanotube bundles. We perform selectivity calculations in the low coverage regime, neglecting interactions between adsorbate molecules. We find substantial spin selectivity for a range of temperatures up to 100 K, and even greater isotope selectivity for an extended range of temperatures,up to 300 K. This isotope selectivity is consistent with recent experimental data, which exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed in these bundles.Comment: Paper submitted to Phys.Rev. B; 17 pages, 2 tables, 6 figure

    Cosmological constraints on the generalized holographic dark energy

    Full text link
    We use the Markov ChainMonte Carlo method to investigate global constraints on the generalized holographic (GH) dark energy with flat and non-flat universe from the current observed data: the Union2 dataset of type supernovae Ia (SNIa), high-redshift Gamma-Ray Bursts (GRBs), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. The most stringent constraints on the GH model parameter are obtained. In addition, it is found that the equation of state for this generalized holographic dark energy can cross over the phantom boundary wde =-1.Comment: 14 pages, 5 figures. arXiv admin note: significant text overlap with arXiv:1105.186

    Indirect Dark Matter Detection from Dwarf Satellites: Joint Expectations from Astrophysics and Supersymmetry

    Get PDF
    We present a general methodology for determining the gamma-ray flux from annihilation of dark matter particles in Milky Way satellite galaxies, focusing on two promising satellites as examples: Segue 1 and Draco. We use the SuperBayeS code to explore the best-fitting regions of the Constrained Minimal Supersymmetric Standard Model (CMSSM) parameter space, and an independent MCMC analysis of the dark matter halo properties of the satellites using published radial velocities. We present a formalism for determining the boost from halo substructure in these galaxies and show that its value depends strongly on the extrapolation of the concentration-mass (c(M)) relation for CDM subhalos down to the minimum possible mass. We show that the preferred region for this minimum halo mass within the CMSSM with neutralino dark matter is ~10^-9-10^-6 solar masses. For the boost model where the observed power-law c(M) relation is extrapolated down to the minimum halo mass we find average boosts of about 20, while the Bullock et al (2001) c(M) model results in boosts of order unity. We estimate that for the power-law c(M) boost model and photon energies greater than a GeV, the Fermi space-telescope has about 20% chance of detecting a dark matter annihilation signal from Draco with signal-to-noise greater than 3 after about 5 years of observation

    Unifying inflation with dark energy in modified F(R) Horava-Lifshitz gravity

    Full text link
    We study FRW cosmology for a non-linear modified F(R) Horava-Lifshitz gravity which has a viable convenient counterpart. A unified description of early-time inflation and late-time acceleration is possible in this theory, but the cosmological dynamic details are generically different from the ones of the convenient viable F(R) model. Remarkably, for some specific choice of parameters they do coincide. The emergence of finite-time future singularities is investigated in detail. It is shown that these singularities can be cured by adding an extra, higher-derivative term, which turns out to be qualitatively different when compared with the corresponding one of the convenient F(R) theory.Comment: LaTeX 12 pages, typos are correcte

    Screening of cosmological constant for De Sitter Universe in non-local gravity, phantom-divide crossing and finite-time future singularities

    Full text link
    We investigate de Sitter solutions in non-local gravity as well as in non-local gravity with Lagrange constraint multiplier. We examine a condition to avoid a ghost and discuss a screening scenario for a cosmological constant in de Sitter solutions. Furthermore, we explicitly demonstrate that three types of the finite-time future singularities can occur in non-local gravity and explore their properties. In addition, we evaluate the effective equation of state for the universe and show that the late-time accelerating universe may be effectively the quintessence, cosmological constant or phantom-like phases. In particular, it is found that there is a case in which a crossing of the phantom divide from the non-phantom (quintessence) phase to the phantom one can be realized when a finite-time future singularity occurs. Moreover, it is demonstrated that the addition of an R2R^2 term can cure the finite-time future singularities in non-local gravity. It is also suggested that in the framework of non-local gravity, adding an R2R^2 term leads to possible unification of the early-time inflation with the late-time cosmic acceleration.Comment: 42 pages, no figure, version accepted for publication in General Relativity and Gravitatio
    corecore