50,193 research outputs found
Filtering for uncertain 2-D discrete systems with state delays
This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Elsevier Ltd.This paper is concerned with the problem of robust H∞ filtering for two-dimensional (2-D) discrete systems with time-delays in states. The 2-D systems under consideration are described in terms of the well-known Fornasini–Marchesini local state-space (FMLSS) models with time-delays. Our attention is focused on the design of a full-order filter such that the filtering error system is guaranteed to be asymptotically stable with a prescribed H∞ disturbance attenuation performance. Sufficient conditions for the existence of desired filters are established by using a linear matrix inequality (LMI) approach, and the corresponding filter design problem is then cast into a convex optimization problem that can be efficiently solved by resorting to some standard numerical software. Furthermore, the obtained results are extended to more general cases where the system matrices contain either polytopic or norm-bounded parameter uncertainties. A simulation example is provided to illustrate the effectiveness of the proposed design method.This work was partially supported by the National Natural Science Foundation of China (60504008), Program for New Century Excellent Talents in University of China and the Postdoctoral Science Foundation of China (20060390231)
Coherent output of photons from coupled superconducting transmission line resonators controlled by charge qubits
We study the coherent control of microwave photons propagating in a
superconducting waveguide consisting of coupled transmission line resonators,
each of which is connected to a tunable charge qubit. While these coupled line
resonators form an artificial photonic crystal with an engineered photonic band
structure, the charge qubits collectively behave as spin waves in the low
excitation limit, which modify the band-gap structure to slow and stop the
microwave propagation. The conceptual exploration here suggests an
electromagnetically controlled quantum device based on the on-chip circuit QED
for the coherent manipulation of photons, such as the dynamic creation of
laser-like output from the waveguide by pumping the artificial atoms for
population inversion.Comment: 8 pages, 3 figure
Phases and phase stabilities of Fe3X alloys (X=Al, As, Ge, In, Sb, Si, Sn, Zn) prepared by mechanical alloying
Mechanical alloying with a Spex 8000 mixer/mill was used to prepare several alloys of the Fe3X composition, where the solutes X were from groups IIB, IIIB, IVB, and VB of the periodic table. Using x-ray diffractometry and Mössbauer spectrometry, we determined the steady-state phases after milling for long times. The tendencies of the alloys to form the bcc phase after milling are predicted well with the modified usage of a Darken–Gurry plot of electronegativity versus metallic radius. Thermal stabilities of some of these phases were studied. In the cases of Fe3Ge and Fe3Sn, there was the formation of transient D03 and B2 order during annealing, although this ordered structure was replaced by equilibrium phases upon further annealing
Consistent picture for the electronic structure around a vortex core in iron-based superconductors
Based on a two-orbital model and taking into account the presence of the
impurity, we studied theoretically the electronic structure in the vortex core
of the iron-Pnictide superconducting materials. The vortex is pinned when the
impurity is close to the vortex core. The bound states shows up for the
unpinned vortex and are wiped out by a impurity. Our results are in good
agreement with recent experiments and present a consistent explanation for the
different electronic structure of vortex core revealed by experiments on
different materials.Comment: 4 pages, 5 figure
Forward-backward asymmetry of photoemission in C excited by few-cycle laser pulses
We theoretically analyze angle-resolved photo-electron spectra (ARPES)
generated by the interaction of C with intense, short laser pulses. In
particular, we focus on the impact of the carrier-envelope phase (CEP) onto the
angular distribution. The electronic dynamics is described by time-dependent
density functional theory, and the ionic background of \csixty is
approximated by a particularly designed jellium model. Our results show a clear
dependence of the angular distributions onto the CEP for very short pulses
covering only very few laser cycles, which disappears for longer pulses. For
the specific laser parameters used in a recent experiments, a very good
agreement is obtained. Furthermore, the asymmetry is found to depend on the
energy of the emitted photoelectrons. The strong influence of the angular
asymmetry of electron emission onto the CEP and pulse duration suggests to use
this sensitivity as a means to analyze the structure of few-cycle laser pulses.Comment: 8 pages, 6 figure
Searching for high- isomers in the proton-rich mass region
Configuration-constrained potential-energy-surface calculations have been
performed to investigate the isomerism in the proton-rich mass
region. An abundance of high- states are predicted. These high- states
arise from two and four-quasi-particle excitations, with and
, respectively. Their excitation energies are comparatively
low, making them good candidates for long-lived isomers. Since most nuclei
under studies are prolate spheroids in their ground states, the oblate shapes
of the predicted high- states may indicate a combination of isomerism
and shape isomerism
- …