29 research outputs found

    Energy storage for sustainable microgrid

    No full text
    Energy Storage for Sustainable Microgrid addresses the issues related to modelling, operation and control, steady-state and dynamic analysis of microgrids with ESS. This book discusses major electricity storage technologies in depth along with their efficiency, lifetime cycles, environmental benefits and capacity, so that readers can envisage which type of storage technology is best for a particular microgrid application. This book offers solutions to numerous difficulties such as choosing the right ESS for the particular microgrid application, proper sizing of ESS for microgrid, as well a

    ARRA-Multi-Level Energy Storage and Controls for Large-Scale Wind Energy Integration

    No full text
    The Project Objective is to design innovative energy storage architecture and associated controls for high wind penetration to increase reliability and market acceptance of wind power. The project goals are to facilitate wind energy integration at different levels by design and control of suitable energy storage systems. The three levels of wind power system are: Balancing Control Center level, Wind Power Plant level, and Wind Power Generator level. Our scopes are to smooth the wind power fluctuation and also ensure adequate battery life. In the new hybrid energy storage system (HESS) design for wind power generation application, the boundary levels of the state of charge of the battery and that of the supercapacitor are used in the control strategy. In the controller, some logic gates are also used to control the operating time durations of the battery. The sizing method is based on the average fluctuation of wind profiles of a specific wind station. The calculated battery size is dependent on the size of the supercapacitor, state of charge of the supercapacitor and battery wear. To accommodate the wind power fluctuation, a hybrid energy storage system (HESS) consisting of battery energy system (BESS) and super-capacitor is adopted in this project. A probability-based power capacity specification approach for the BESS and super-capacitors is proposed. Through this method the capacities of BESS and super-capacitor are properly designed to combine the characteristics of high energy density of BESS and the characteristics of high power density of super-capacitor. It turns out that the super-capacitor within HESS deals with the high power fluctuations, which contributes to the extension of BESS lifetime, and the super-capacitor can handle the peaks in wind power fluctuations without the severe penalty of round trip losses associated with a BESS. The proposed approach has been verified based on the real wind data from an existing wind power plant in Iowa. An intelligent controller that increases battery life within hybrid energy storage systems for wind application was developed. Comprehensive studies have been conducted and simulation results are analyzed. A permanent magnet synchronous generator, coupled with a variable speed wind turbine, is connected to a power grid (14-bus system). A rectifier, a DC-DC converter and an inverter are used to provide a complete model of the wind system. An Energy Storage System (ESS) is connected to a DC-link through a DC-DC converter. An intelligent controller is applied to the DC-DC converter to help the Voltage Source Inverter (VSI) to regulate output power and also to control the operation of the battery and supercapacitor. This ensures a longer life time for the batteries. The detailed model is simulated in PSCAD/EMTP. Additionally, economic analysis has been done for different methods that can reduce the wind power output fluctuation. These methods are, wind power curtailment, dumping loads, battery energy storage system and hybrid energy storage system. From the results, application of single advanced HESS can save more money for wind turbines owners. Generally the income would be the same for most of methods because the wind does not change and maximum power point tracking can be applied to most systems. On the other hand, the cost is the key point. For short term and small wind turbine, the BESS is the cheapest and applicable method while for large scale wind turbines and wind farms the application of advanced HESS would be the best method to reduce the power fluctuation. The key outcomes of this project include a new intelligent controller that can reduce energy exchanged between the battery and DC-link, reduce charging/discharging cycles, reduce depth of discharge and increase time interval between charge/discharge, and lower battery temperature. This improves the overall lifetime of battery energy storages. Additionally, a new design method based on probability help optimize the power capacity specification for BESS and super-capacitors. Recommendations include experimental implementation of the controller and energy storage systems in laboratory environment for further testing and verification, which will help commercialization of the proposed system design and controller

    Improved Virtual Synchronous Generator Principle for Better Economic Dispatch and Stability in Grid-Connected Microgrids with Low Noise

    No full text
    The proper operation of microgrids depends on Economic Dispatch. It satisfies all requirements while lowering the microgrids’ overall operating and generation costs. Since distributed generators constitute a large portion of microgrids, seamless communication between generators is essential. While guaranteeing a reliable microgrid operation, this should be achieved with the fewest losses as possible. The distributed generator technology introduces noise into the system by design. To find the best economic dispatch strategy, noise was considered in this research as a limitation in grid-connected microgrids. The microgrid’s performance was improved, and the proposed technique also showed increased resilience. A virtual synchronous generator (VSG) control approach is proposed with a noiseless consensus-based algorithm to improve the power quality of microgrids. Voltage and frequency regulation modules are the foundation of the VSG paradigm. The synchronous generator’s second-order equation (hidden-pole configuration) was also used to represent the voltage of the stator and rotor motion. This study compared changes in power, frequency, and voltage for the microgrid by utilizing the described control approach using MATLAB. According to the findings, this method aids in controlling load and noise variations and offers distributed generators an efficient control strategy

    Condition Parameter Modeling for Anomaly Detection in Wind Turbines

    No full text
    Data collected from the supervisory control and data acquisition (SCADA) system, used widely in wind farms to obtain operational and condition information about wind turbines (WTs), is of important significance for anomaly detection in wind turbines. The paper presents a novel model for wind turbine anomaly detection mainly based on SCADA data and a back-propagation neural network (BPNN) for automatic selection of the condition parameters. The SCADA data sets are determined through analysis of the cumulative probability distribution of wind speed and the relationship between output power and wind speed. The automatic BPNN-based parameter selection is for reduction of redundant parameters for anomaly detection in wind turbines. Through investigation of cases of WT faults, the validity of the automatic parameter selection-based model for WT anomaly detection is verified

    The frequency-independent control method for distributed generation systems

    No full text
    In this paper a novel frequency-independent control method suitable for distributed generation (DG) is presented. This strategy is derived based on the abc/αβ transformation and abc/dq transformation of the ac system variables. The active and reactive currents injected by the DG are controlled in the synchronously rotating orthogonal dq reference frame. The transformed variables are used in control of the voltage source inverter that connects DG to distribution network. Due to importance of distributed resources in modern power systems, development of new, practical, cost-effective and simple control strategies is obligatory. The new control method of this paper does not need a Phase Locked Loop (PLL) in control circuit and has fast dynamic response in providing active and reactive power to nonlinear load. From extensive simulation results, high performance of this control strategy in DG application is demonstrated with improved voltage profile, increased power factor and reduced total harmonic distortion.Peer Reviewe

    Optimal Planning of Charging for Plug-In Electric Vehicles Focusing on Users’ Benefits

    No full text
    Many electric vehicles’ (EVs) charging strategies were proposed to optimize the operations of the power grid, while few focus on users’ benefits from the viewpoint of EV users. However, low participation is always a problem of those strategies since EV users also need a charging strategy to serve their needs and interests. This paper proposes a method focusing on EV users’ benefits that reduce the cost of battery capacity degradation, electricity cost, and waiting time for different situations. A cost model of battery capacity degradation under different state of charge (SOC) ranges is developed based on experimental data to estimate the cost of battery degradation. The simulation results show that the appropriate planning of the SOC range reduces 80% of the cost of battery degradation, and the queuing theory also reduces over 60% of the waiting time in the busy situations. Those works can also become a premise of charging management to increase the participation. The proposed strategy focusing on EV users’ benefits would not give negative impacts on the power grid, and the grid load is also optimized by an artificial fish swarm algorithm (AFSA) in the solution space of the charging time restricted by EV users’ benefits
    corecore