2 research outputs found

    A Universal Law for Cell Uptake of One-Dimensional Nanomaterials

    No full text
    Understanding cell interaction with one-dimensional nanomaterials, including nanotubes, nanowires, nanofibers, filamentous bacteria, and certain nanoparticle chains, has fundamental importance to many applications such as biomedical diagnostics, therapeutics, and nanotoxicity. Here we show that cell uptake of one-dimensional nanomaterials via receptor-mediated endocytosis is dominated by a single dimensionless parameter that scales with the membrane tension and radius of the nanomaterial and inversely with the membrane bending stiffness. It is shown that as cell membrane internalizes one-dimensional nanomaterials the uptake follows a near-perpendicular entry mode at small membrane tension but it switches to a near-parallel interaction mode at large membrane tension

    Rotation-Facilitated Rapid Transport of Nanorods in Mucosal Tissues

    No full text
    Mucus is a viscoelastic gel layer that typically protects exposed surfaces of the gastrointestinal (GI) tract, lung airways, and other mucosal tissues. Particles targeted to these tissues can be efficiently trapped and removed by mucus, thereby limiting the effectiveness of such drug delivery systems. In this study, we experimentally and theoretically demonstrated that cylindrical nanoparticles. (NPs), such as mesoporous silica nanorods and calcium phosphate nanorods, have superior transport and trafficking capability in mucus compared with spheres of the same chemistry. The higher diffusivity of nanorods leads to deeper mucus penetration and a longer retention time in the GI tract than that of their spherical counterparts. Molecular simulations and stimulated emission of depletion (STED) microscopy revealed that this anomalous phenomenon can be attributed to the rotational dynamics of the NPs facilitated by the mucin fibers and the shear flow. These findings shed new light on the shape design of NP-based drug delivery systems targeted to mucosal and tumor sites that possess a fibrous structure/porous medium
    corecore