43 research outputs found

    A large deviation theory perspective on nanoscale transport phenomena

    Full text link
    Understanding transport processes in complex nanoscale systems, like ionic conductivities in nanofluidic devices or heat conduction in low dimensional solids, poses the problem of examining fluctuations of currents within nonequilibrium steady states and relating those fluctuations to nonlinear or anomalous responses. We have developed a systematic framework for computing distributions of time integrated currents in molecular models and relating cumulants of those distributions to nonlinear transport coefficients. The approach elaborated upon in this perspective follows from the theory of dynamical large deviations, benefits from substantial previous formal development, and has been illustrated in several applications. The framework provides a microscopic basis for going beyond traditional hydrodynamics in instances where local equilibrium assumptions break down, which are ubiquitous at the nanoscale.Comment: Small revisions for clarit

    MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    Get PDF
    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range

    Field-dependent ionic conductivities from generalized fluctuation-dissipation relations

    Full text link
    We derive a relationship for the electric field dependent ionic conductivity in terms of fluctuations of time integrated microscopic variables. We demonstrate this formalism with molecular dynamics simulations of solutions of differing ionic strength with implicit solvent conditions and molten salts. These calculations are aided by a novel nonequilibrium statistical reweighting scheme that allows for the conductivity to be computed as a continuous function of the applied field. In strong electrolytes, we find the fluctuations of the ionic current are Gaussian and subsequently the conductivity is constant with applied field. In weaker electrolytes and molten salts, we find the fluctuations of the ionic current are strongly non-Gaussian and the conductivity increases with applied field. This nonlinear behavior, known phenomenologically for dilute electrolytes as the Onsager-Wien effect, is general and results from the suppression of ionic correlations at large applied fields, as we elucidate through both dynamic and static correlations within nonequilibrium steady-states.Comment: 6 pages, 3 figure

    Measurement of the inclusive isolated-photon cross section in pp collisions at √s = 13 TeV using 36 fb−1 of ATLAS data

    Get PDF
    The differential cross section for isolated-photon production in pp collisions is measured at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC using an integrated luminosity of 36.1 fb. The differential cross section is presented as a function of the photon transverse energy in different regions of photon pseudorapidity. The differential cross section as a function of the absolute value of the photon pseudorapidity is also presented in different regions of photon transverse energy. Next-to-leading-order QCD calculations from Jetphox and Sherpa as well as next-to-next-to-leading-order QCD calculations from Nnlojet are compared with the measurement, using several parameterisations of the proton parton distribution functions. The predictions provide a good description of the data within the experimental and theoretical uncertainties. [Figure not available: see fulltext.

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    The IDENTIFY study: the investigation and detection of urological neoplasia in patients referred with suspected urinary tract cancer - a multicentre observational study

    Get PDF
    Objective To evaluate the contemporary prevalence of urinary tract cancer (bladder cancer, upper tract urothelial cancer [UTUC] and renal cancer) in patients referred to secondary care with haematuria, adjusted for established patient risk markers and geographical variation. Patients and Methods This was an international multicentre prospective observational study. We included patients aged ≥16 years, referred to secondary care with suspected urinary tract cancer. Patients with a known or previous urological malignancy were excluded. We estimated the prevalence of bladder cancer, UTUC, renal cancer and prostate cancer; stratified by age, type of haematuria, sex, and smoking. We used a multivariable mixed-effects logistic regression to adjust cancer prevalence for age, type of haematuria, sex, smoking, hospitals, and countries. Results Of the 11 059 patients assessed for eligibility, 10 896 were included from 110 hospitals across 26 countries. The overall adjusted cancer prevalence (n = 2257) was 28.2% (95% confidence interval [CI] 22.3–34.1), bladder cancer (n = 1951) 24.7% (95% CI 19.1–30.2), UTUC (n = 128) 1.14% (95% CI 0.77–1.52), renal cancer (n = 107) 1.05% (95% CI 0.80–1.29), and prostate cancer (n = 124) 1.75% (95% CI 1.32–2.18). The odds ratios for patient risk markers in the model for all cancers were: age 1.04 (95% CI 1.03–1.05; P < 0.001), visible haematuria 3.47 (95% CI 2.90–4.15; P < 0.001), male sex 1.30 (95% CI 1.14–1.50; P < 0.001), and smoking 2.70 (95% CI 2.30–3.18; P < 0.001). Conclusions A better understanding of cancer prevalence across an international population is required to inform clinical guidelines. We are the first to report urinary tract cancer prevalence across an international population in patients referred to secondary care, adjusted for patient risk markers and geographical variation. Bladder cancer was the most prevalent disease. Visible haematuria was the strongest predictor for urinary tract cancer

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Can Semi-Volatile Organic Aerosols Lead to Fewer Cloud Particles?

    Full text link
    The impact of condensing organic aerosols on activated cloud number concentration is examined in a new aerosol microphysics box model, MATRIX-VBS. The model includes the volatility-basis set (VBS) framework coupled with the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) that resolves aerosol mass and number concentrations and aerosol mixing state. By including the condensation of organic aerosols, the new model produces less activated particles compared to the original model, which treats organic aerosols as non-volatile. Parameters such as aerosol chemical composition, mass and number concentrations, and particle sizes which affect activated cloud number concentration are thoroughly tested via a suite of Monte-Carlo simulations. Results show that by considering semi-volatile organics in MATRIX-VBS, there is lower activated particle number concentration, except in cases with low cloud updrafts, in clean environment at above freezing temperatures, and in polluted environments at high temperature (310K) and extremely low humidity conditions

    On the molecular correlations that result in field-dependent conductivities in electrolyte solutions

    Full text link
    Employing recent advances in response theory and nonequilibrium ensemble reweighting, we study the dynamic and static correlations that give rise to an electric field-dependent ionic conductivity in electrolyte solutions. We consider solutions modeled with both implicit and explicit solvents, with different dielectric properties, and at multiple concentrations. Implicit solvent models at low concentrations and small dielectric constants exhibit strongly field-dependent conductivities. We compare these results to Onsager-Wilson theory of the Wien effect, which provides a qualitatively consistent prediction at low concentrations and high static dielectric constants but is inconsistent away from these regimes. The origin of the discrepancy is found to be increased ion correlations under these conditions. Explicit solvent effects act to suppress nonlinear responses, yielding a weakly field-dependent conductivity over the range of physically realizable field strengths. By decomposing the relevant time correlation functions, we find that the insensitivity of the conductivity to the field results from the persistent frictional forces on the ions from the solvent. Our findings illustrate the utility of nonequilibrium response theory in rationalizing nonlinear transport behavior

    Surface Energy Budget Observed for Winter Wheat in the North China Plain During a Fog–Haze Event

    Get PDF
    In recent winters, fog–haze events have occurred frequently over the North China Plain. To understand the characteristics of conventional meteorological conditions, the near-surface radiation balance, and the surface energy budget under different pollution levels, we analyzed data collected at an observation site in Gucheng, which is located in the Hebei province in North China, based on a campaign that ran from December 1 2016 to January 31 2017. We found that meteorological conditions with a lower wind speed, weakly unstable (stable) stratification, higher relative humidity, and lower surface pressure during the daytime (night-time) are associated with fog–haze events. On heavy pollution days (defined as days with a daily mean PM 2.5 concentration > 150 μg m −3 ), the decrease in downward shortwave radiation (S ↓ ) and the increase in downward longwave radiation (L ↓ ) are significant. The mean S ↓ (L ↓ ) values on clean-air days (daily mean PM 2.5 concentration < 75 μg m −3 ) and heavily polluted days was 222 (222) W m −2 and 124 (265) W m −2 , respectively. Due to the negative (positive) radiative forcing of aerosols during the daytime (night-time), the daily maximum (night-time mean) net radiation (R n ) is negatively (positively) related to the daily mean PM 2.5 concentration, the correlation coefficient between the daily maximum (night-time mean) R n and daily mean PM 2.5 concentration being − 0.47 (0.51). Diurnal variations in sensible heat flux (H) and latent heat flux (λE) are insignificant on heavily polluted days, the mean daily maximum H (λE) is only 40 (28) W m −2 on heavily polluted days, but reaches 90 (42) W m −2 on clean-air days. Additionally, the friction velocity, standard deviation of vertical velocity, and turbulent kinetic energy on heavily polluted days are also quantified
    corecore