7 research outputs found

    Evaluation of medical student self-rated preparedness to care for limited english proficiency patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with limited English proficiency (LEP) represent a growing proportion of the US population and are at risk of receiving suboptimal care due to difficulty communicating with healthcare providers who do not speak their language. Medical school curricula are required to prepare students to care for all patients, including those with LEP, but little is known about how well they achieve this goal. We used data from a survey of medical students' cross-cultural preparedness, skills, and training to specifically explore their self-rated preparedness to care for LEP patients.</p> <p>Methods</p> <p>We electronically surveyed students at one northeastern US medical school. We used bivariate analyses to identify factors associated with student self-rated preparedness to care for LEP patients including gender, training year, first language, race/ethnicity, percent LEP and minority patients seen, and skill with interpreters. We used multivariate logistic regression to examine the independent effect of each factor on LEP preparedness. In a secondary analysis, we explored the association between year in medical school and self-perceived skill level in working with an interpreter.</p> <p>Results</p> <p>Of 651 students, 416 completed questionnaires (63.9% response rate). Twenty percent of medical students reported being very well or well-prepared to care for LEP patients. Of these, 40% were in their fourth year of training. Skill level working with interpreters, prevalence of LEP patients seen, and training year were correlated (p < 0.001) with LEP preparedness. Using multivariate logistic regression, only student race/ethnicity and self-rated skill with interpreters remained statistically significant. Students in third and fourth years were more likely to feel skilled with interpreters (p < 0.001).</p> <p>Conclusions</p> <p>Increasingly, medical students will need to be prepared to care for LEP patients. Our study supports two strategies to improve student preparedness: training students to work effectively with interpreters and increasing student diversity to better reflect the changing US demographics.</p

    Ignition of single nickel-coated aluminum particles

    No full text
    International audienceA thin coating of nickel on the surface of aluminum particles can prevent their agglomeration and at the same time facilitate their ignition, thus increasing the efficiency of aluminized propellants. In this work, ignition of single nickel-coated aluminum particles is investigated using an electrodynamic levitation setup (heating by laser) and a tube reactor (heating by high-temperature gas). The levitation experiments are usedfor measurements of the ignition delay time at different Ni contents in the particles. The high-temperature gas experiments are used to measure the critical ignition temperature. It is reported that the Ni coating dramatically decreases both the ignition delay time of laser-heated Al particles and the critical ignition temperature of gas-heated Al particles. A heat balance analysis of the levitated particles shows that the lower ignition temperature of Ni-coated Al particles is the most probable reason for the observed reduction in the ignition delay time. Exothermic intermetallic reactions between liquid Al and solid Ni are considered as the main reason for the lowered ignition temperature of Ni-coated Al particles

    Niosome-encapsulated balanocarpol : compound isolation, characterisation, and cytotoxicity evaluation against human breast and ovarian cancer cell lines

    No full text
    Natural products have been successfully used to treat various ailments since ancient times and currently several anticancer agents based on natural products are used as the main therapy to treat cancer patients, or as a complimentary treatment to chemotherapy or radiation. Balanocarpol, which is a promising natural product that has been isolated from Hopea dryobalanoides, has been studied as a potential anticancer agent but its application is limited due to its high toxicity, low water solubility, and poor bioavailability. Therefore, the aim of this study is to improve the characteristics of balanocarpol and increase its anticancer activity through its encapsulation in a bilayer structure of a lipid-based nanoparticle drug delivery system where the application of nanotechnology can help improve the limitations of balanocarpol. The compound was first extracted and isolated from H. dryobalanoides. Niosome nanoparticles composed of Span 80 (SP80) and cholesterol were formulated through an innovative microfluidic mixing method for the encapsulation and delivery of balanocarpol. The prepared particles were spherical, small, and uniform with an average particles size and polydispersity index ~175 nm and 0.088, respectively. The encapsulation of balanocarpol into the SP80 niosomes resulted in an encapsulation efficiency of ~40%. The niosomes formulation loaded with balanocarpol showed a superior anticancer effect over the free compound when tested in vitro on human ovarian carcinoma (A2780) and human breast carcinoma (ZR-75-1). This is the first study to report the use of SP80 niosomes for the successful encapsulation and delivery of balanocarpol into cancer cells

    Comprehensive landslide susceptibility map of Central Asia

    Full text link
    peer reviewedAbstract. Central Asia is an area characterized by complex tectonics and active deformation; the related seismic activity controls the earthquake hazard level that, due to the occurrence of secondary and tertiary effects, also has direct implications for the hazard related to mass movements such as landslides, which are responsible for an extensive number of casualties every year. Climatically, this region is characterized by strong rainfall gradient contrasts due to the diversity of climate and vegetation zones. The region is drained by large, partly snow- and glacier-fed rivers that cross or terminate in arid forelands; therefore, it is also affected by a significant river flood hazard, mainly in spring and summer seasons. The challenge posed by the combination of different hazards can only be tackled by considering a multi-hazard approach harmonized among the different countries, in agreement with the requirements of the Sendai Framework for Disaster Risk Reduction. This work was carried out within the framework of the Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia (SFRARR) project as part of a multi-hazard approach and is focused on the first landslide susceptibility analysis at a regional scale for Central Asia. To this aim the most detailed landslide inventories, covering both national and transboundary territories, were implemented in a random forest model, together with several independent variables. The proposed approach represents an innovation in terms of resolution (from 30 to 70 m) and extension of the analyzed area with respect to previous regional landslide susceptibility and hazard zonation models applied in Central Asia. The final aim was to provide a useful tool for land use planning and risk reduction strategies for landslide scientists, practitioners, and administrators

    Fucosterol inhibits the cholinesterase activities and reduces the release of pro-inflammatory mediators in lipopolysaccharide and amyloid-induced microglial cells

    No full text
    According to the cholinergic hypothesis, memory impairment in patients with Alzheimer’s disease (AD) is associated with the deficit of cholinergic function in the brain. In addition, microglial activation plays an important role in AD by producing pro-inflammatory cytokines, nitric oxide (NO), and prostaglandin E2 (PGE2). It was noted that lipopolysaccharide (LPS) and β-amyloid (Aβ) induced microglial activation leading to neuroinflammation and ultimately neuronal cell death. Fucosterol, a plant sterol found in brown algae, has been reported to exhibit several bioactivities. This study aimed to investigate the anti-cholinesterase activities of fucosterol and its effects on the release of pro-inflammatory mediators by LPS- and Aβ-induced microglial cells. Cholinesterase inhibition was determined using the modified Ellman colorimetric method. Expression of pro-inflammatory mediators was determined using RT-PCR and ELISA. The NO content was determined using the Griess test. Fucosterol exhibited dose-dependent inhibitory activities against both acetylcholinesterase and butyrylcholinesterase. It significantly inhibited the production of cytokines, namely interleukins (IL-6, IL-1β), tumor necrosis factor-α (TNF-α), NO, and PGE2 in LPS- or Aβ-induced microglial cells. Fucosterol provided protective effects against Aβ-mediated neuroinflammation by inhibiting the production of pro-inflammatory mediators. These findings provided insights into the development of fucosterol as a potential drug candidate for AD, a multifactorial neurodegenerative disorder
    corecore