11 research outputs found

    Do most lymphocytes in humans really reside in the gut

    No full text

    Dynamics of CD8+ T cell responses during acute and chronic lymphocytic choriomeningitis virus infection

    No full text
    Infection of mice with lymphocytic choriomeningitis virus (LCMV) is frequently used to study the underlying principles of viral infections and immune responses. We fit a mathematical model to recently published data characterizing Ag-specific CD8+ T cell responses during acute (Armstrong) and chronic (clone 13) LCMV infection. This allows us to analyze the differences in the dynamics of CD8+ T cell responses against different types of LCMV infections. For the four CD8+ T cell responses studied, we find that, compared with the responses against acute infection, responses against chronic infection are generally characterized by an earlier peak and a faster contraction phase thereafter. Furthermore, the model allows us to give a new interpretation of the effect of thymectomy on the dynamics of CD8+ T cell responses during chronic LCMV infection: a smaller number of naive precursor cells is sufficient to account for the observed differences in the responses in thymectomized mice. Finally, we compare data characterizing LCMV-specific CD8+ T cell responses from different laboratories. Although the data were derived from the same experimental model, we find quantitative differences that can be solved by introducing a scaling factor. Also, we find kinetic differences that are at least partly due to the infrequent measurements of CD8+ T cells in the different laboratories

    IL-2 regulates expansion of CD4+ T cell populations by affecting cell death: insight from modeling CFSE data

    No full text
    It is generally accepted that IL-2 influences the dynamics of populations of T cells in vitro and in vivo. However, which parameters for cell division and/or death are affected by IL-2 is not well understood. To get better insights into the potential ways of how IL-2 may influence the population dynamics of T cells, we analyze data on the dynamics of CFSE-labeled polyclonal CD4+ T lymphocytes in vitro after anti-CD3 stimulation at different concentrations of exogenous IL-2. Inferring cell division and death rates from CFSE-delabeling experiments is not straightforward and requires the use of mathematical models. We find that to adequately describe the dynamics of T cells at low concentrations of exogenous IL-2, the death rate of divided cells has to increase with the number of divisions cells have undergone. IL-2 hardly affects the average interdivision time. At low IL-2 concentrations 1) fewer cells are recruited into the response and successfully complete their first division; 2) the stochasticity of cell division is increased; and 3) the rate, at which the death rate increases with the division number, increases. Summarizing, our mathematical reinterpretation suggests that the main effect of IL-2 on the in vitro dynamics of naive CD4+ T cells occurs by affecting the rate of cell death and not by changing the rate of cell division

    Estimating Lymphocyte Division and Death Rates from CFSE Data

    No full text
    The division tracking dye, carboxyfluorescin diacetate succinimidyl ester (CFSE) is currently the most informative labeling technique for characterizing the division history of cells in the immune system. Gett and Hodgkin [Nat. Immunol. 1:239–244, 2000] have pioneered the quantitative analysis of CFSE data. We confirm and extend their data analysis approach using simple mathematical models. We employ the extended Gett and Hodgkin [Nat. Immunol. 1:239–244, 2000] method to estimate the time to first division, the fraction of cells recruited into division, the cell cycle time, and the average death rate from CFSE data on T cells stimulated under different concentrations of IL-2. The same data is also fitted with a simple mathematical model that we derived by reformulating the numerical model of Deenick et al. [J. Immunol. 170:4963–4972, 2003]. By a non-linear fitting procedure we estimate parameter values and confidence intervals to identify the parameters that are influenced by the IL-2 concentration. We obtain a significantly better fit to the data when we assume that the T cell death rate depends on the number of divisions cells have completed. We provide an outlook on future work that involves extending the Deenick et al. [J. Immunol. 170:4963– 4972, 2003] model into the classical Smith–Martin model, and into a model with arbitrary probability distributions for death and division through subsequent divisions

    Quantifying cell turnover using CFSE data

    No full text
    The CFSE dye dilution assay is widely used to determine the number of divisions a given CFSE labelled cell has undergone in vitro and in vivo. In this paper, we consider how the data obtained with the use of CFSE (CFSE data) can be used to estimate the parameters determining cell division and death. For a homogeneous cell population (i.e., a population with the parameters for cell division and death being independent of time and the number of divisions cells have undergone), we consider a specific biologically based "Smith-Martin" model of cell turnover and analyze three different techniques for estimation of its parameters: direct fitting, indirect fitting and rescaling method. We find that using only CFSE data, the duration of the division phase (i.e., approximately the S+G2+M phase of the cell cycle) can be estimated with the use of either technique. In some cases, the average division or cell cycle time can be estimated using the direct fitting of the model solution to the data or by using the Gett-Hodgkin method [Gett A. and Hodgkin, P. 2000. A cellular calculus for signal integration by T cells. Nat. Immunol. 1:239-244]. Estimation of the death rates during commitment to division (i.e., approximately the G1 phase of the cell cycle) and during the division phase may not be feasible with the use of only CFSE data. We propose that measuring an additional parameter, the fraction of cells in division, may allow estimation of all model parameters including the death rates during different stages of the cell cycle
    corecore