2 research outputs found
Harmonic Vibrational Excitations in Disordered Solids and the "Boson Peak"
We consider a system of coupled classical harmonic oscillators with spatially
fluctuating nearest-neighbor force constants on a simple cubic lattice. The
model is solved both by numerically diagonalizing the Hamiltonian and by
applying the single-bond coherent potential approximation. The results for the
density of states are in excellent agreement with each other. As
the degree of disorder is increased the system becomes unstable due to the
presence of negative force constants. If the system is near the borderline of
stability a low-frequency peak appears in the reduced density of states
as a precursor of the instability. We argue that this peak
is the analogon of the "boson peak", observed in structural glasses. By means
of the level distance statistics we show that the peak is not associated with
localized states