266 research outputs found
Mesenchymal stem cells and collagen patches for anterior cruciate ligament repair
AIM: To investigate collagen patches seeded with mesenchymal stem cells (MSCs) and/or tenocytes (TCs) with regards to their suitability for anterior cruciate ligament (ACL) repair.
METHODS: Dynamic Intraligamentary Stabilization (DIS) utilizes a dynamic screw system to keep ACL remnants in place and promote biological healing, supplemented by collagen patches. How these scaffolds interact with cells and what type of benefit they provide has not yet been investigated in detail. Primary ACL-derived TCs and human bone marrow derived MSCs were seeded onto two different types of 3D collagen scaffolds, Chondro-Gide® (CG) and Novocart® (NC). Cells were seeded onto the scaffolds and cultured for 7 days either as a pure populations or as “premix” containing a 1 : 1 ratio of TCs to MSCs. Additionally, as controls, cells were seeded in monolayers and in co-cultures on both sides of porous high-density membrane inserts (0.4µm). We analyzed the patches by real time polymerase chain reaction (RT-PCR), glycosaminoglycan (GAG), DNA and hydroxy-proline (HYP) content, was determined. To determine cell spreading and adherence in the scaffolds microscopic imaging techniques, i.e. confocal laser scanning microscopy (cLSM) and scanning electron microscopy (SEM), were applied.
RESULTS: CLSM and SEM imaging analysis confirmed cell adherence onto scaffolds. The metabolic cell activity revealed that patches promote adherence and proliferation of cells. The most dramatic increase in absolute metabolic cell activity was measured for CG samples seeded with tenocytes or a 1:1 cell premix. Analysis of DNA content and cLSM imaging also indicated MSCs were not proliferating as nicely as tenocytes on CG. The HYP to GAG ratio significantly changed for the premix group, resulting from a slightly lower GAG content, demonstrating that the cells are modifying the underlying matrix. Real-time quantitative polymerase chain reaction data indicated that MSCs showed a trend of differentiation towards a more tenogenic-like phenotype after 7 days.
CONCLUSION: CG and NC are both cyto-compatible with primary MSCs and TCs; TCs seemed to perform better on these collagen patches than MSCs
Diamond Window Technology for Electron Cyclotron Heating and Current Drive: State of the Art
Nuclear fusion power plants require electron cyclotron (EC) heating and current drive (H&CD) systems for plasma heating and stabilization. High-power microwave beams between 1 and 2 MW generated by gyrotrons propagate in a dedicated waveguide transmission system to reach the plasma at specific locations. Key components in this transmission system are the chemical vapor deposition diamond windows on both the torus and gyrotron sides of the reactor as they allow transmission of high-power beams while acting as confinement and/or vacuum boundaries. Diamond windows consist of a polycrystalline diamond disk integrated in a metallic housing. In the conventional configuration, there is one disk perpendicular to the beam propagation direction. A steering mechanism is then used to deploy the fixed frequency beam at different locations in the plasma. This is, for instance, the configuration used in the ITER EC H&CD system. Movable parts close to the plasma will be problematic for the lifetime of launchers in future fusion reactors like the DEMOnstration nuclear fusion reactor (DEMO) because of the higher heat loads and neutron fluxes. Therefore, one of the alternative concepts is to deploy the beams directly at the desired resonant magnetic flux surface by frequency tuning gyrotrons. In this case, diamond windows able to work in a given frequency range, like the diamond Brewster-angle window, are required. It is an elegant and compact broadband window solution with the disk inclined at the Brewster angle with respect to the beam direction. This paper shows the development and the current state of different diamond window concepts including the design, the numerical analyses, and application of standard construction nuclear codes and of a specific qualification program
Validation of theory-based models for the control of plasma currents in W7-X divertor plasmas
A theory-based model for the control of plasma currents for steady-state operation in W7-X is proposed and intended for model-based plasma control. The conceptual outline implies the strength of physics-based models: it offer approaches applicable to future conditions of fusion devices or next-step machines. The application at extrapolated settings is related to the validity range of the theory model. Therefore, the predictive power of theory-based control models could be larger than for data-driven approaches and limitations can be predicted from the validity range for the prediction of bootstrap currents in W7-X. The model predicts the L/R response when density or heating power is changed. The model is based on neoclassical bootstrap current calculations and validated for different discharge conditions. While the model was found to be broadly applicable for conducted electron-cyclotron-heated discharges in W7-X, limits were found for cases when the polarization of the electron cyclotron heating was changed from X2 to O2-heating. The validity assessment attempts to quantify the potential of the derived model for model-based control in the operational space (density, heating power) of W7-X
Integration concept of an Electron Cyclotron System in DEMO
The pre-conceptual layout for an electron cyclotron system (ECS) in DEMO is described. The present DEMO ECS considers only equatorial ports for both plasma heating and neoclassical tearing mode (NTM) control. This differs from ITER, where four launchers in upper oblique ports are dedicated to NTM control and one equatorial EC port for heating and current drive (H&CD) purposes as basic configuration. Rather than upper oblique ports, DEMO has upper vertical ports to allow the vertical removal of the large breeding blanket segments. While ITER is using front steering antennas for NTM control, in DEMO the antennas are recessed behind the breeding blanket and called mid-steering antennas, referred to the radially recessed position to the breeding blanket. In the DEMO pre-conceptual design phase two variants are studied to integrate the ECS in equatorial ports. The first option integrates waveguide bundles at four vertical levels inside EC port plugs with antennas with fixed and movable mid-steering mirrors that are powered by gyrotrons, operating at minimum two different multiples of the fundamental resonance frequency of the microwave output window. Alternatively, the second option integrates fixed antenna launchers connected to frequency step-tunable gyrotrons. The first variant is described in this paper, introducing the design and functional requirements, presenting the equatorial port allocation, the port plug design including its maintenance concept, the basic port cell layout, the transmission line system with diamond windows from the tokamak up to the RF building and the gyrotron sources. The ECS design studies are supported by neutronic and tokamak integration studies, quasi-optical and plasma physics studies, which will be summarized. Physics and technological gaps will be discussed and an outlook to future work will be given
- …