6 research outputs found

    Dean flow-coupled inertial focusing in curved channels

    Get PDF
    Passive particle focusing based on inertial microfluidics was recently introduced as a high-throughput alternative to active focusing methods that require an external force field to manipulate particles. In inertial microfluidics, dominant inertial forces cause particles to move across streamlines and occupy equilibrium positions along the faces of walls in flows through straight micro channels. In this study, we systematically analyzed the addition of secondary Dean forces by introducing curvature and show how randomly distributed particles entering a simple u-shaped curved channel are focused to a fixed lateral position exiting the curvature. We found the lateral particle focusing position to be fixed and largely independent of radius of curvature and whether particles entering the curvature are pre-focused (at equilibrium) or randomly distributed. Unlike focusing in straight channels, where focusing typically is limited to channel cross-sections in the range of particle size to create single focusing point, we report here particle focusing in a large cross-section area (channel aspect ratio 1: 10). Furthermore, we describe a simple u-shaped curved channel, with single inlet and four outlets, for filtration applications. We demonstrate continuous focusing and filtration of 10 mu m particles (with > 90% filtration efficiency) from a suspension mixture at throughputs several orders of magnitude higher than flow through straight channels (volume flow rate of 4.25ml/min). Finally, as an example of high throughput cell processing application, white blood cells were continuously processed with a filtration efficiency of 78% with maintained high viability. We expect the study will aid in the fundamental understanding of flow through curved channels and open the door for the development of a whole set of bio-analytical applications

    Introducing a New Algorithm for Classification of Etiology in Studies on Pediatric Pneumonia: Protocol for the Trial of Respiratory Infections in Children for Enhanced Diagnostics Study

    Get PDF
    Background: There is a need to better distinguish viral infections from antibiotic-requiring bacterial infections in children presenting with clinical community-acquired pneumonia (CAP) to assist health care workers in decision making and to improve the rational use of antibiotics.Objective: The overall aim of the Trial of Respiratory infections in children for ENhanced Diagnostics (TREND) study is to improve the differential diagnosis of bacterial and viral etiologies in children aged below 5 years with clinical CAP, by evaluating myxovims resistance protein A (MxA) as a biomarker for viral CAP and by evaluating an existing (multianalyte point-of-care antigen detection test system [mariPOC respi] ArcDia International Oy Ltd.) and a potential future point-of-care test for respiratory pathogens.Methods: Children aged 1 to 59 months with clinical CAP as well as healthy, hospital-based, asymptomatic controls will be included at a pediatric emergency hospital in Stockholm, Sweden. Blood (analyzed for MxA and C-reactive protein) and nasopharyngeal samples (analyzed with real-time polymerase chain reaction as the gold standard and antigen-based mariPOC respi test as well as saved for future analyses of a novel recombinase polymerase amplification-based point-of-care test for respiratory pathogens) will be collected. A newly developed algorithm for the classification of CAP etiology will be used as the reference standard.Results: A pilot study was performed from June to August 2017. The enrollment of study subjects started in November 2017. Results are expected by the end of 2019.Conclusions: The findings from the TREND study can be an important step to improve the management of children with clinical CAP
    corecore