22 research outputs found

    Anomalous cooling of the massive white dwarf in U Geminorum following a narrow dwarf nova outburst

    Get PDF
    We obtained Hubble GHRS medium resolution (G160M grating) phase-resolved spectroscopic observations of the prototype dwarf nova U Geminorum during dwarf nova quiescence, 13 days and 61 days following the end of a narrow outburst. The spectral wavelength ranges were centered upon three different line regions: N V (1238\AA, 1242\AA), Si III (1300\AA) and He II (1640\AA). All of the quiescent spectra at both epochs are dominated by absorption lines and show no emission features. The Si III and He II absorption line velocities versus orbital phase trace the orbital motion of the white dwarf but the N~V absorption velocities appear to deviate from the white dwarf motion. We confirm our previously reported low white dwarf rotational velocity, V sin i= 100 km/s. We obtain a white dwarf orbital velocity semi-amplitude K1=107 km/s. Using the gamma-velocity of Wade (1981) we obtain an Einstein redshift of 80.4 km/s and hence a carbon core white dwarf mass of ~1.1 Msun. We report the first subsolar chemical abundances of C and Si for U Gem with C down by 0.05 with respect to the Sun, almost certainly a result of C depletion due to thermonuclear processing. This C-depletion is discussed within the framework of a weak TNR, contamination of the secondary during the common envelope phase, and mixing of C-depleted white dwarf gas with C-depleted matter deposited during a dwarf nova event. Remarkably the Teff of the white dwarf 13 days after outburst is only 32,000K, anomalously cooler than previous early post-outburst measurements. Extensive cooling during an extraordinarily long (210 days) quiescence followed by accretion onto an out-of-equilibrium cooled degenerate could explain the lower Teff.Comment: 16 pages AAS-Latex, 4 Figures, accepted for publication in Ap

    Phase-resolved HST/STIS spectroscopy of the exposed white dwarf in the high-field polar AR UMa

    Get PDF
    Phase-resolved HST/STIS ultraviolet spectroscopy of the high-field polar AR UMa confirms that the WD photospheric Ly alpha Zeeman features are formed in a magnetic field of ~200 MG. In addition to the Ly alpha pi and sigma+ components, we detect the forbidden hydrogen 1s0->2s0 transition, which becomes ``enabled'' in the presence of both strong magnetic and electric fields. Our attempt in fitting the overall optical+UV low state spectrum with single temperature magnetic WD models remains rather unsatisfactory, indicating either a shortcoming in the present models or a new physical process acting in AR UMa. As a result, our estimate of the WD temperature remains somewhat uncertain, Twd=20000+-5000K. We detect a broad emission bump centered at ~1445A and present throughout the entire binary orbit, and a second bump near ~1650A, which appears only near the inferior conjunction of the secondary star. These are suggestive of low harmonic cyclotron emission produced by low-level (M-dot~1e-13 Msun/yr) accretion onto both magnetic poles. However, there is no evidence in the power spectrum of light variations for accretion in gas blobs. The observed Ly alpha emission line shows a strong phase dependence with maximum flux and redshift near orbital phase phi~0.3, strongly indicating an origin on the trailing hemisphere of the secondary star. An additional Ly alpha absorption feature with similar phasing as the Ly alpha emission, but a \~700km/s blueshift could tentatively be ascribed to absorption of WD emission in a moderately fast wind. We derive a column density of neutral hydrogen of NH=(1.1+-1.0)1e18 cm**-2, the lowest of any known polar.Comment: 26 pages, 10 figures, AAS TeX 5.0, accepted for publication in the Astrophysical Journa

    FUSE and HST/STIS far-ultraviolet observations of AM Herculis in an extended low state

    Full text link
    We have obtained FUSE and HST/STIS time-resolved spectroscopy of the polar AM Herculis during a deep low state. The spectra are entirely dominated by the emission of the white dwarf. Both the far-ultraviolet (FUV) flux as well as the spectral shape vary substantially over the orbital period, with maximum flux occurring at the same phase as during the high state. The variations are due to the presence of a hot spot on the white dwarf, which we model quantitatively. The white dwarf parameters can be determined from a spectral fit to the faint phase data, when the hot spot is self-eclipsed. Adopting the distance of 79+8-6pc determined by Thorstensen, we find an effective temperature of 19800+-700K and a mass of Mwd=0.78+0.12-0.17Msun. The hot spot has a lower temperature than during the high state, ~34000-40000K, but covers a similar area, ~10% of the white dwarf surface. Low state FUSE and STIS spectra taken during four different epochs in 2002/3 show no variation of the FUV flux level or spectral shape, implying that the white dwarf temperature and the hot spot temperature, size, and location do not depend on the amount of time the system has spent in the low state. Possible explanations are ongoing accretion at a low level, or deep heating, both alternatives have some weaknesses that we discuss. No photospheric metal absorption lines are detected in the FUSE and STIS spectra, suggesting that the average metal abundances in the white dwarf atmosphere are lower than 1e-3 times their solar values.Comment: ApJ in press, 12 pages, 11 figure

    ST/STIS Spectroscopy of the White Dwarfs in the Short-Period Dwarf Novae LL And and EF Peg

    Get PDF
    We present new HST/STIS observations of the short-period dwarf novae LL And and EF Peg during deep quiescence. We fit stellar models to the UV spectra and use optical and IR observations to determine the physical parameters of the whitedwarfs in the systems, the distances to the binaries, and the properties of thesecondary stars. Both white dwarfs are relatively cool, having T_{eff} near 15000K, and consistent with a mass of 0.6 M-sun. The white dwarf in LL And appears to be of solar abundance or slightly lower while that in EF Peg is near 0.1-0.3 solar. LL And is found to be 760 pc away while EF Peg is closer at 380 pc. EF Peg appears to have an ~M5V secondary star, consistent with that expected for its orbital period, while the secondary object in LL And remains a mystery.Comment: Accepted in Ap

    Circular polarimetry of suspect wind-accreting magnetic pre-polars

    Get PDF
    We present results from a circular polarimetric survey of candidate detached magnetic white dwarf - M dwarf binaries obtained using the Nordic Optical Telescope, La Palma. We obtained phase resolved spectropolarimetry and imaging polarimetry of seven systems, five of which show clearly variable circular polarisation. The data indicate that these targets have white dwarfs with magnetic field strengths >80 MG. Our study reveals that cyclotron emission can dominate the optical luminosity at wavelengths corresponding to the cyclotron emission harmonics, even in systems where the white dwarfs are only wind-accreting. This implies that a very significant fraction of the stellar wind of the companion star is captured by the magnetic white dwarf reducing the magnetic braking in pre-cataclysmic variables (CVs). Furthermore, the polarimetric confirmation of several detached, wind-accreting magnetic systems provides observational constraints on the models of magnetic CV evolution and white dwarf magnetic field generation. We also find that the white dwarf magnetic field configuration in at least two of these systems appears to be very complex

    Hubble Space Telescope Observations of UV Oscillations in WZ Sagittae During the Decline from Outburst

    Full text link
    We present a time series analysis of Hubble Space Telescope observations of WZ Sge obtained in 2001 September, October, November and December as WZ Sge declined from its 2001 July superoutburst. Previous analysis of these data showed the temperature of the white dwarf decreased from ~29,000 K to ~18,000 K. In this study we binned the spectra over wavelength to yield ultraviolet light curves at each epoch that were then analyzed for the presence of the well-known 27.87 s and 28.96 s oscillations. We detect the 29 s periodicity at all four epochs, but the 28 s periodicity is absent. The origin of these oscillations has been debated since their discovery in the 1970s and competing hypotheses are based on either white dwarf non-radial g-mode pulsations or magnetically-channelled accretion onto a rotating white dwarf. By analogy with the ZZ Ceti stars, we argue that the non-radial g-mode pulsation model demands a strong dependence of pulse period on the white dwarf's temperature. However, these observations show the 29 s oscillation is independent of the white dwarf's temperature. Thus we reject the white dwarf non-radial g-mode pulsation hypothesis as the sole origin of the oscillations. It remains unclear if magnetically-funnelled accretion onto a rapidly rotating white dwarf (or belt on the white dwarf) is responsible for producing the oscillations. We also report the detection of a QPO with period ~18 s in the September light curve. The amplitudes of the 29 s oscillation and the QPO vary erratically on short timescales and are not correlated with the mean system brightness nor with each other.Comment: 20 pages, 3 figures, 1 table; accepted for publication in Ap

    Dynamical constraints on the component masses of the cataclysmic variable WZ Sagittae

    Get PDF
    We present phase-resolved spectroscopy of the short-period cataclysmic variable WZ Sge obtained with the Hubble Space Telescope. We were able to resolve the orbital motion of a number of absorption lines that likely probe the environment near the accreting white dwarf. The radial velocities derived from simultaneous fits to 13 absorption lines indicate an orbital velocity semi-amplitude of K-UV (47 +/- 3) km s(-1). However, we find that the phase zero is offset from the white dwarf ephemeris by +0.1. Our offset and velocity amplitude are very similar to constraints derived from optical emission lines from the quiescent accretion disk, despite the fact that we are probing material much closer to the primary. If we associate the UV amplitude with K-1, our dynamical constraints together with the published K-2 estimates and the known binary inclination of i = 77 +/- 2 imply 0.88 M-circle dot < M-1 < 1.53 M-circle dot, 0: 078 M-circle dot < M-2 < 0.13 M-circle dot, and 0.075 < q = M-2/M-1 < 0.101. If we interpret the mean velocity of the UV lines [-(16 +/- 4) km s(-1)] as being due to the gravitational redshift caused in the high-g environment near the white dwarf, we find v(grav) (56 +/- 5) km s(-1), which provides an independent estimate on the mass of the primary of M-1 (0.85 +/- 0.04) M-circle dot when coupled with a mass-radius relation. Our primary mass estimates are in excellent agreement and are also self-consistent with spectrophotometric fits to the UV fluxes despite the observed phase offset. It is at this point unclear what causes the observed phase offset in the UV spectra and by how much it distorts the radial velocity signature from the underlying white dwarf

    Hubble Space Telescope STIS spectroscopy and modeling of the long-term cooling of WZ sagittae following the 2001 July outburst

    No full text
    We present the latest Hubble Space Telescope Space Telescope Imaging Spectrograph ( HST STIS) E140M far-ultraviolet (FUV) spectrum of the dwarf nova WZ Sge, obtained in 2004 July, 3 yr following the early super-outburst of 2001 July. With a temperature T approximate to 15,000 K, the white dwarf (WD) is still similar to 1500 K above its quiescent temperature, it has a FUV flux level almost twice its preoutburst value, and its spectrum does not distinctly exhibit the quasi-molecular hydrogen feature around 1400 8, which was present in the International Ultraviolet Explorer (IUE) and HST Goddard High Resolution Spectrograph (GHRS) preoutburst data. This is a clear indication that even 3 yr after outburst, the system is still showing the effect of the outburst. We model the cooling curve of WZ Sge, over a period of 3 yr, using a stellar evolution code including accretion and the effects of compressional heating. Assuming that compressional heating alone is the source of the energy released during the cooling phase, we find that (1) the mass of the WD must be quite large (approximate to 1.0 +/- 0.2 M-circle dot), and (2) the mass accretion rate must have a time-averaged (over 52 days of outburst) value of order 10(-8) M-circle dot yr(-1) or above. The outburst mass accretion rate derived from these compressional heating models is larger than the rates estimated from optical observations (Patterson et al.) and from a FUV spectral fit (Long et al.) by up to 1 order of magnitude. This implies that during the cooling phase the energy released by the WD is not due to compressional heating alone. We suggest ongoing accretion during quiescence as an additional source of energy
    corecore