60 research outputs found

    Excess cases of prostate cancer and estimated overdiagnosis associated with PSA testing in East Anglia

    Get PDF
    This study aimed to estimate the extent of 'overdiagnosis' of prostate cancer attributable to prostate-specific antigen (PSA) testing in the Cambridge area between 1996 and 2002. Overdiagnosis was defined conceptually as detection of prostate cancer through PSA testing that otherwise would not have been diagnosed within the patient's lifetime. Records of PSA tests in Addenbrookes Hospital were linked to prostate cancer registrations by NHS number. Differences in prostate cancer registration rates between those receiving and not receiving prediagnosis PSA tests were calculated. The proportion of men aged 40 years or over with a prediagnosis PSA test increased from 1.4 to 5.2% from 1996 to 2002. The rate of diagnosis of prostate cancer was 45% higher (rate ratios (RR) = 1.45, 95% confidence intervals (CI) 1.02-2.07) in men with a history of prediagnosis PSA testing. Assuming average lead times of 5 to 10 years, 40-64% of the PSA-detected cases were estimated to be overdiagnosed. In East Anglia, from 1996 to 2000, a 1.6% excess of cases was associated with PSA testing (around a quarter of the 5.3% excess incidence cases observed in East Anglia from 1996 to 2000). Further quantification of the overdiagnosis will result from continued surveillance and from linkage of incidence to testing in other hospitals

    Against quantiles: categorization of continuous variables in epidemiologic research, and its discontents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Quantiles are a staple of epidemiologic research: in contemporary epidemiologic practice, continuous variables are typically categorized into tertiles, quartiles and quintiles as a means to illustrate the relationship between a continuous exposure and a binary outcome.</p> <p>Discussion</p> <p>In this paper we argue that this approach is highly problematic and present several potential alternatives. We also discuss the perceived drawbacks of these newer statistical methods and the possible reasons for their slow adoption by epidemiologists.</p> <p>Summary</p> <p>The use of quantiles is often inadequate for epidemiologic research with continuous variables.</p

    Prostate-specific antigen testing accuracy in community practice

    Get PDF
    BACKGROUND: Most data on prostate-specific antigen (PSA) testing come from urologic cohorts comprised of volunteers for screening programs. We evaluated the diagnostic accuracy of PSA testing for detecting prostate cancer in community practice. METHODS: PSA testing results were compared with a reference standard of prostate biopsy. Subjects were 2,620 men 40 years and older undergoing (PSA) testing and biopsy from 1/1/95 through 12/31/98 in the Albuquerque, New Mexico metropolitan area. Diagnostic measures included the area under the receiver-operating characteristic curve, sensitivity, specificity, and likelihood ratios. RESULTS: Cancer was detected in 930 subjects (35%). The area under the ROC curve was 0.67 and the PSA cutpoint of 4 ng/ml had a sensitivity of 86% and a specificity of 33%. The likelihood ratio for a positive test (LR+) was 1.28 and 0.42 for a negative test (LR-). PSA testing was most sensitive (90%) but least specific (27%) in older men. Age-specific reference ranges improved specificity in older men (49%) but decreased sensitivity (70%), with an LR+ of 1.38. Lowering the PSA cutpoint to 2 ng/ml resulted in a sensitivity of 95%, a specificity of 20%, and an LR+ of 1.19. CONCLUSIONS: PSA testing had fair discriminating power for detecting prostate cancer in community practice. The PSA cutpoint of 4 ng/ml was sensitive but relatively non-specific and associated likelihood ratios only moderately revised probabilities for cancer. Using age-specific reference ranges and a PSA cutpoint below 4 ng/ml improved test specificity and sensitivity, respectively, but did not improve the overall accuracy of PSA testing

    A review and meta-analysis of prospective studies of red and processed meat intake and prostate cancer

    Get PDF
    Over the past decade, several large epidemiologic investigations of meat intake and prostate cancer have been published. Therefore, a meta-analysis of prospective studies was conducted to estimate potential associations between red or processed meat intake and prostate cancer. Fifteen studies of red meat and 11 studies of processed meat were included in the analyses. High vs. low intake and dose-response analyses were conducted using random effects models to generate summary relative risk estimates (SRRE). No association between high vs. low red meat consumption (SRRE = 1.00, 95% CI: 0.96-1.05) or each 100 g increment of red meat (SRRE = 1.00, 95% CI: 0.95-1.05) and total prostate cancer was observed. Similarly, no association with red meat was observed for advanced prostate cancer (SRRE = 1.01, 95% CI: 0.94-1.09). A weakly elevated summary association between processed meat and total prostate cancer was found (SRRE = 1.05, 95% CI: 0.99-1.12), although heterogeneity was present, the association was attenuated in a sub-group analysis of studies that adjusted for multiple potential confounding factors, and publication bias likely affected the summary effect. In conclusion, the results of this meta-analysis are not supportive of an independent positive association between red or processed meat intake and prostate cancer

    Nutrition and cancer: A review of the evidence for an anti-cancer diet

    Get PDF
    It has been estimated that 30–40 percent of all cancers can be prevented by lifestyle and dietary measures alone. Obesity, nutrient sparse foods such as concentrated sugars and refined flour products that contribute to impaired glucose metabolism (which leads to diabetes), low fiber intake, consumption of red meat, and imbalance of omega 3 and omega 6 fats all contribute to excess cancer risk. Intake of flax seed, especially its lignan fraction, and abundant portions of fruits and vegetables will lower cancer risk. Allium and cruciferous vegetables are especially beneficial, with broccoli sprouts being the densest source of sulforophane. Protective elements in a cancer prevention diet include selenium, folic acid, vitamin B-12, vitamin D, chlorophyll, and antioxidants such as the carotenoids (α-carotene, β-carotene, lycopene, lutein, cryptoxanthin). Ascorbic acid has limited benefits orally, but could be very beneficial intravenously. Supplementary use of oral digestive enzymes and probiotics also has merit as anticancer dietary measures. When a diet is compiled according to the guidelines here it is likely that there would be at least a 60–70 percent decrease in breast, colorectal, and prostate cancers, and even a 40–50 percent decrease in lung cancer, along with similar reductions in cancers at other sites. Such a diet would be conducive to preventing cancer and would favor recovery from cancer as well

    The Patient in Diabetic Ketoacidosis

    No full text
    corecore