10 research outputs found

    Alcohol and Smoking Mediated Modulations in Adaptive Immunity in Pancreatitis

    Get PDF
    Pancreatitis is a condition of pancreatic inflammation driven by injury to the pancreatic parenchyma. The extent of acinar insult, intensity, and type of immune response determines the severity of the disease. Smoking, alcohol and autoimmune pancreatitis are some of the predominant risk factors that increase the risk of pancreatitis by differentially influencing the adaptive immune system. The overall decrease in peripheral lymphocyte (T-, B- and (natural killer T-) NKT-cell) count and increased infiltration into the damaged pancreatic tissue highlight the contribution of adaptive immunity in the disease pathology. Smoking and alcohol modulate the responsiveness and apoptosis of T- and B-cells during pancreatic insult. Acute pancreatitis worsens with smoking and alcohol, leading to the development of systemic inflammatory response syndrome and compensatory anti-inflammatory response syndrome, suggesting the critical role of adaptive immunity in fatal outcomes such as multiple organ dysfunction. The presence of CD4+ and CD8+ T-lymphocytes and perforin-expressing cells in the fibrotic tissue in chronic pancreatitis modulate the severity of the disease. Due to their important role in altering the severity of the disease, attempts to target adaptive immune mediators will be critical for the development of novel therapeutic interventions

    Molecular Implications of MUC5AC-CD44 Axis in Colorectal Cancer Progression and Chemoresistance

    Get PDF
    BACKGROUND: Differential expression of mucins has been associated with several cancers including colorectal cancer (CRC). In normal physiological conditions, secretory mucin MUC5AC is not expressed in the colonic mucosa, whereas its aberrant expression is observed during development of colon cancer and its precursor lesions. To date, the molecular mechanism of MUC5AC in CRC progression and drug resistance remains obscure. METHODS: MUC5AC expression was determined in colon tissue microarray by immunohistochemistry. A RNA interference and CRISPR/Cas9-mediated system was used to knockdown/knockout the MUC5AC in CRC cell lines to delineate its role in CRC tumorigenesis using in vitro functional assays and in vivo (sub-cutaneous and colon orthotopic) mouse models. Finally, CRC cell lines and xenograft models were used to identify the mechanism of action of MUC5AC. RESULTS: Overexpression of MUC5AC is observed in CRC patient tissues and cell lines. MUC5AC expression resulted in enhanced cell invasion and migration, and decreased apoptosis of CRC cells. MUC5AC interacted with CD44 physically, which was accompanied by the activation of Src signaling. Further, the presence of MUC5AC resulted in enhanced tumorigenesis and appearance of metastatic lesions in orthotopic mouse model. Additionally, up-regulation of MUC5AC resulted in resistance to 5-fluorouracil (5-FU) and oxaliplatin, and its knockout increased sensitivity to these drugs. Finally, we observed that up-regulation of MUC5AC conferred resistance to 5-FU through down-regulation of p53 and its target gene p21 and up-regulation of β-catenin and its target genes CD44 and Lgr5. CONCLUSION: Our findings suggest that differential expression of secretory mucin MUC5AC results in enhanced tumorigenesis and also confers chemoresistance via CD44/β-catenin/p53/p21 signaling

    The Current Landscape of Antibody-based Therapies in Solid Malignancies

    Get PDF
    Over the past three decades, monoclonal antibodies (mAbs) have revolutionized the landscape of cancer therapy. Still, this benefit remains restricted to a small proportion of patients due to moderate response rates and resistance emergence. The field has started to embrace better mAb-based formats with advancements in molecular and protein engineering technologies. The development of a therapeutic mAb with long-lasting clinical impact demands a prodigious understanding of target antigen, effective mechanism of action, gene engineering technologies, complex interplay between tumor and host immune system, and biomarkers for prediction of clinical response. This review discusses the various approaches used by mAbs for tumor targeting and mechanisms of therapeutic resistance that is not only caused by the heterogeneity of tumor antigen, but also the resistance imposed by tumor microenvironment (TME), including inefficient delivery to the tumor, alteration of effector functions in the TME, and Fc-gamma receptor expression diversity and polymorphism. Further, this article provides a perspective on potential strategies to overcome these barriers and how diagnostic and prognostic biomarkers are being used in predicting response to mAb-based therapies. Overall, understanding these interdependent parameters can improve the current mAb-based formulations and develop novel mAb-based therapeutics for achieving durable clinical outcomes in a large subset of patients

    Trefoil Factor(s) and CA19.9: A Promising Panel for Early Detection of Pancreatic Cancer

    Get PDF
    BACKGROUND: Trefoil factors (TFF1, TFF2, and TFF3) are small secretory molecules that recently have gained significant attention in multiple studies as an integral component of pancreatic cancer (PC) subtype-specific gene signature. Here, we comprehensively investigated the diagnostic potential of all the member of trefoil family, i.e., TFF1, TFF2, and TFF3 in combination with CA19.9 for detection of PC. METHODS: Trefoil factors (TFFs) gene expression was analyzed in publicly available cancer genome datasets, followed by assessment of their expression in genetically engineered spontaneous mouse model (GEM) of PC (KrasG12D; Pdx1-Cre (KC)) and in human tissue microarray consisting of normal pancreas adjacent to tumor (NAT), precursor lesions (PanIN), and various pathological grades of PC by immunohistochemistry (IHC). Serum TFFs and CA19.9 levels were evaluated via ELISA in comprehensive sample set (n = 362) comprised of independent training and validation sets each containing benign controls (BC), chronic pancreatitis (CP), and various stages of PC. Univariate and multivariate logistic regression and receiver operating characteristic curves (ROC) were used to examine their diagnostic potential both alone and in combination with CA19.9. FINDINGS: The publicly available datasets and expression analysis revealed significant increased expression of TFF1, TFF2, and TFF3 in human PanINs and PC tissues. Assessment of KC mouse model also suggested upregulated expression of TFFs in PanIN lesions and early stage of PC. In serum analyses studies, TFF1 and TFF2 were significantly elevated in early stages of PC in comparison to benign and CP control group while significant elevation in TFF3 levels were observed in CP group with no further elevation in its level in early stage PC group. In receiver operating curve (ROC) analyses, combination of TFFs with CA19.9 emerged as promising panel for discriminating early stage of PC (EPC) from BC (AUC INTERPRETATION: In silico, tissue and serum analyses validated significantly increased level of all TFFs in precursor lesions and early stages of PC. The combination of TFFs enhanced sensitivity and specificity of CA19.9 to discriminate early stage of PC from benign control and chronic pancreatitis groups

    Elevated PAF1-RAD52 Axis Confers Chemoresistance to Human Cancers

    Get PDF
    Cisplatin- and gemcitabine-based chemotherapeutics represent a mainstay of cancer therapy for most solid tumors; however, resistance limits their curative potential. Here, we identify RNA polymerase II-associated factor 1 (PAF1) as a common driver of cisplatin and gemcitabine resistance in human cancers (ovarian, lung, and pancreas). Mechanistically, cisplatin- and gemcitabine-resistant cells show enhanced DNA repair, which is inhibited by PAF1 silencing. We demonstrate an increased interaction of PAF1 with RAD52 in resistant cells. Targeting the PAF1 and RAD52 axis combined with cisplatin or gemcitabine strongly diminishes the survival potential of resistant cells. Overall, this study shows clinical evidence that the expression of PAF1 contributes to chemotherapy resistance and worse clinical outcome for lethal cancers

    Secreted Mucin 5AC-Mediated Epithelial and Stromal Modulations Augment Pancreatic Cancer Aggressiveness

    No full text
    The mucosal layer that shields the epithelium of the body cavities is made up of high molecular weight, heavily glycosylated proteins called mucins that are broadly categorized into transmembrane and secreted members. Aberrant expression of secreted mucin MUC5AC has been implicated in lung, stomach, and colon cancer pathologies. MUC5AC is expressed de novo in the pancreas upon oncogenic insult, and its abundance in pancreatic tumor and circulation correlates to disease progression. However, few studies have explored beyond the diagnostic and prognostic significance of MUC5AC in pancreatic cancer (PC). In this dissertation, we sought to investigate the mechanistic contribution of MUC5AC in PC utilizing autochthonous PC murine models (KC: LSL-KrasG12D, Pdx1-Cre; KCM: LSL-KrasG12D, Pdx1-Cre, Muc5ac-/-), human PC cells, and tumor tissues. We demonstrated that MUC5AC promotes PC progression by enriching cancer stem cells via the integrin αvβ5/pSTAT3/KLF4 axis. Further, high MUC5AC expression in PC patients and autochthonous murine tumors facilitated higher resistance to gemcitabine due to the nuclear translocation of β-catenin and subsequent rise in c-Myc-associated glutaminolysis. Co-administration of β-catenin and glutaminolysis inhibitors with gemcitabine abrogated the MUC5AC-mediated chemoresistance in murine and human PC tumoroids. Additionally, KC and KCM tumors revealed significant alterations in the expression of stromal markers, suggesting the contribution of MUC5AC beyond the primary pancreatic tumor. Muc5ac was enriched in the KC adipose tissue (AT), which enhanced the expansion and migration of adipose-derived mesenchymal stem cells (AD-MSCs) via the CXCR2 and Rac1 axis, respectively. Mass spectrometry analyses revealed that Muc5ac scaffolds CXCR2 ligands in AT and serum of tumor-bearing mice and PC patients, thereby acting as a carrier of tumor secretome to distant sites. Muc5ac-mediated AD-MSC mobilization led to increased α-SMA+ cancer-associated fibroblasts (CAFs) in the Muc5ac-expressing pancreatic tumors. Owing to the dense tumor stroma and therapy-refractory nature, PC patients demonstrate a dismal survival rate. Hence, evaluating the mechanistic implications of secreted molecule MUC5AC in regulating local and systemic events in the PC landscape may bolster prognostication and therapeutic strategies to improve clinical outcomes
    corecore