6 research outputs found
Magnetisation Dynamics of Nanoscale Magnetic Materials and Spintronics
The magnetisation dynamics of a single square nanomagnet, the interaction between a pair of nanodiscs, a partially built writer structure and a range of magnetic tunnel junction sensor heads were studied using Time Resolved Scanning Kerr Microscopy (TRSKM) and four probe contact DC electrical transport measurements. Large amplitude magnetisation dynamics of a single square nanomagnet have been studied by TRSKM. Experimental spectra revealed that only a single mode was excited for all bias field values. Micromagnetic simulations demonstrate that at larger pulsed field amplitudes the center mode dominates the dynamic response while the edge mode is almost completely suppressed. The magnetisation dynamics occurring in a system comprised of two laterally separated magnetic nano-discs were also investigated. The polar Magneto-Optical Kerr Effect was used to measure the dynamic response of each disc independently so as to demonstrate that dynamic dipolar interactions between non-uniform spin wave modes in the different discs may be identified from the difference in their phase of oscillation. Results show a stronger dynamic dipolar interaction than expected from micromagnetic simulations highlighting both the need for characterisation and control of magnetic properties at the deep nanoscale and the potential use of dynamic interactions for the realization of useful magnetic nanotechnologies.
TRSKM measurements were made simultaneously of the three Cartesian components of the magnetisation vector, by means of a quadrant photodiode polarisation bridge detector, on partially built hard disk writer structures. The rise time, relaxation time, and amplitude of each component has been related to the magnetic ground state, the initial torque, and flux propagation through the yoke and pole piece. Dynamic images reveal “flux-beaming” in which the magnetisation component parallel to the symmetry axis of the yoke is largest along that axis. A comparison of the magnetisation dynamics excited with different pulsed excitation amplitudes was also made. The results shows that more effective flux beaming is observed for higher pulse amplitudes.
Lastly the microwave emission of Tunnel Magnetoresistance (TMR) nanopillars has been measured using a four probe contact DC electrical transport measurement technique as a magnetic field is applied in the plane of the film at different angles (ϕ_H ) with respect to the easy axis. Experimental spectra revealed that a more complicated spectrum containing several modes is observed as ϕ_H is increased. The modes were identified as edge and higher order modes from the statistical distribution of modes from different devices and micromagnetic simulations. The in-plane and out-of-plane components of the Spin Transfer Torque (STT) were estimated by analytical fitting of experimental data for the lowest frequency edge mode for the value of ϕ_H where the amplitude of the said mode was a maximum and its frequency a minimum. The estimated values are larger than expected perhaps due to the macrospin approximation made in deriving the analytical model.
The results presented in this thesis can contribute to the understanding of magnetisation dynamics in industrially relevant data storage devices as well as the realization of a dipolar field coupling mechanism for arrays of nanooscillators
Ultrafast magnetization dynamics of spintronic nanostructures
Copyright © 2011 The Royal SocietyThe ultrafast (sub-nanosecond) magnetization dynamics of ferromagnetic thin films and elements that find application in spintronic devices is reviewed. The major advances in the understanding of magnetization dynamics in the two decades since the discovery of giant magnetoresistance and the prediction of spin-transfer torque are discussed, along with the plethora of new experimental techniques developed to make measurements on shorter length and time scales. Particular consideration is given to time-resolved measurements of the magneto-optical Kerr effect, and it is shown how a succession of studies performed with this technique has led to an improved understanding of the dynamics of nanoscale magnets. The dynamics can be surprisingly rich and complicated, with the latest studies of individual nanoscale elements showing that the dependence of the resonant mode spectrum upon the physical structure is still not well understood. Finally, the article surveys the prospects for development of high-frequency spintronic devices and highlights areas in which further study of fundamental properties will be required within the coming decade
Large amplitude magnetization dynamics and the suppression of edge modes in a single nanomagnet
Copyright © 2011 American Institute of PhysicsLarge amplitude magnetization dynamics of a single square nanomagnet have been studied by time-resolved Kerr microscopy. Experimental spectra revealed that only a single mode was excited for all bias field values. Micromagnetic simulations demonstrate that at larger pulsed field amplitudes the center mode dominates the dynamic response while the edge mode is almost completely suppressed. Controlled suppression of edge modes in a single nanomagnet has potential applications in the operation of nanoscale spin transfer torque oscillators and bistable switching devices for which the amplitude of the magnetization trajectory is often large and a more uniform dynamic response is desirable
Time- and vector-resolved Kerr microscopy of hard disk writers
Copyright © 2011 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 99 (2011) and may be found at http://dx.doi.org/10.1063/1.3665957Time-resolved scanning Kerr microscopy has been used to make wafer level measurements of magnetization dynamics within the yoke and pole piece of partially built hard disk writer structures. Three Cartesian components of the vector magnetization were recorded simultaneously using a quadrant photodiode polarization bridge detector. The rise time, relaxation time, and amplitude of each component has been related to the magnetic ground state, the initial torque, and flux propagation through the yoke and pole piece. Dynamic images reveal “flux-beaming” in which the magnetization component parallel to the symmetry axis of the yoke is largest along that axis
Observation of vortex dynamics in arrays of nanomagnets
Vortex dynamics within arrays of square ferromagnetic nanoelements have been studied by time-resolved
scanningKerr microscopy (TRSKM),while x-ray photoemission electronmicroscopy has been used to investigate
the equilibrium magnetic state of the arrays. An alternating field demagnetization process was found to initialize
a distribution of equilibrium states within the individual elements of the array, including quasiuniform states
and vortex states of different chirality and core polarization. Repeated initialization revealed some evidence of
stochastic behavior during the formation of the equilibrium state. TRSKM with a spatial resolution of ∼300 nm
was used to detect vortex gyration within arrays of square nanoelements of 250-nm lateral size. Two arrays were
studied consisting of a 9 × 9 and 5 × 5 arrangement of nanoelements with 50- and 500-nm element edge-to-edge
separation to encourage strong and negligible dipolar interactions, respectively. In the 5 × 5 element array,
TRSKM images, acquired at a fixed phase of the driving microwave magnetic field, revealed differences in the
gyrotropic phase within individual elements. While some phase variation is attributed to the dispersion in the
size and shape of elements, the vortex chirality and core polarization are also shown to influence the phase. In
the 9 × 9 array, strong magneto-optical response due to vortex gyration was observed across regions with length
equal to either one or two elements. Micromagnetic simulations performed for 2 × 2 arrays of elements suggest
that particular combinations of vortex chirality and polarization in neighboring elements are required to generate
the observed magneto-optical contrast.Engineering and Physical Sciences Research Council (EPSRC
Magnetisation dynamics of nanoscale magnetic materials and spintronics
The magnetisation dynamics of a single square nanomagnet, the interaction between a pair of nanodiscs, a partially built writer structure and a range of magnetic tunnel junction sensor heads were studied using Time Resolved Scanning Kerr Microscopy (TRSKM) and four probe contact DC electrical transport measurements. Large amplitude magnetisation dynamics of a single square nanomagnet have been studied by TRSKM. Experimental spectra revealed that only a single mode was excited for all bias field values. Micromagnetic simulations demonstrate that at larger pulsed field amplitudes the center mode dominates the dynamic response while the edge mode is almost completely suppressed. The magnetisation dynamics occurring in a system comprised of two laterally separated magnetic nano-discs were also investigated. The polar Magneto-Optical Kerr Effect was used to measure the dynamic response of each disc independently so as to demonstrate that dynamic dipolar interactions between non-uniform spin wave modes in the different discs may be identified from the difference in their phase of oscillation. Results show a stronger dynamic dipolar interaction than expected from micromagnetic simulations highlighting both the need for characterisation and control of magnetic properties at the deep nanoscale and the potential use of dynamic interactions for the realization of useful magnetic nanotechnologies. TRSKM measurements were made simultaneously of the three Cartesian components of the magnetisation vector, by means of a quadrant photodiode polarisation bridge detector, on partially built hard disk writer structures. The rise time, relaxation time, and amplitude of each component has been related to the magnetic ground state, the initial torque, and flux propagation through the yoke and pole piece. Dynamic images reveal “flux-beaming” in which the magnetisation component parallel to the symmetry axis of the yoke is largest along that axis. A comparison of the magnetisation dynamics excited with different pulsed excitation amplitudes was also made. The results shows that more effective flux beaming is observed for higher pulse amplitudes. Lastly the microwave emission of Tunnel Magnetoresistance (TMR) nanopillars has been measured using a four probe contact DC electrical transport measurement technique as a magnetic field is applied in the plane of the film at different angles (ϕ_H ) with respect to the easy axis. Experimental spectra revealed that a more complicated spectrum containing several modes is observed as ϕ_H is increased. The modes were identified as edge and higher order modes from the statistical distribution of modes from different devices and micromagnetic simulations. The in-plane and out-of-plane components of the Spin Transfer Torque (STT) were estimated by analytical fitting of experimental data for the lowest frequency edge mode for the value of ϕ_H where the amplitude of the said mode was a maximum and its frequency a minimum. The estimated values are larger than expected perhaps due to the macrospin approximation made in deriving the analytical model. The results presented in this thesis can contribute to the understanding of magnetisation dynamics in industrially relevant data storage devices as well as the realization of a dipolar field coupling mechanism for arrays of nanooscillators.EThOS - Electronic Theses Online ServiceGBUnited Kingdo