6,919 research outputs found
Lensless Imaging by Compressive Sensing
In this paper, we propose a lensless compressive imaging architecture. The
architecture consists of two components, an aperture assembly and a sensor. No
lens is used. The aperture assembly consists of a two dimensional array of
aperture elements. The transmittance of each aperture element is independently
controllable. The sensor is a single detection element. A compressive sensing
matrix is implemented by adjusting the transmittance of the individual aperture
elements according to the values of the sensing matrix. The proposed
architecture is simple and reliable because no lens is used. The architecture
can be used for capturing images of visible and other spectra such as infrared,
or millimeter waves, in surveillance applications for detecting anomalies or
extracting features such as speed of moving objects. Multiple sensors may be
used with a single aperture assembly to capture multi-view images
simultaneously. A prototype was built by using a LCD panel and a photoelectric
sensor for capturing images of visible spectrum.Comment: Accepted ICIP 2013. 5 Pages, 7 Figures. arXiv admin note: substantial
text overlap with arXiv:1302.178
Iterative Object and Part Transfer for Fine-Grained Recognition
The aim of fine-grained recognition is to identify sub-ordinate categories in
images like different species of birds. Existing works have confirmed that, in
order to capture the subtle differences across the categories, automatic
localization of objects and parts is critical. Most approaches for object and
part localization relied on the bottom-up pipeline, where thousands of region
proposals are generated and then filtered by pre-trained object/part models.
This is computationally expensive and not scalable once the number of
objects/parts becomes large. In this paper, we propose a nonparametric
data-driven method for object and part localization. Given an unlabeled test
image, our approach transfers annotations from a few similar images retrieved
in the training set. In particular, we propose an iterative transfer strategy
that gradually refine the predicted bounding boxes. Based on the located
objects and parts, deep convolutional features are extracted for recognition.
We evaluate our approach on the widely-used CUB200-2011 dataset and a new and
large dataset called Birdsnap. On both datasets, we achieve better results than
many state-of-the-art approaches, including a few using oracle (manually
annotated) bounding boxes in the test images.Comment: To appear in ICME 2017 as an oral pape
Learning Fashion Compatibility with Bidirectional LSTMs
The ubiquity of online fashion shopping demands effective recommendation
services for customers. In this paper, we study two types of fashion
recommendation: (i) suggesting an item that matches existing components in a
set to form a stylish outfit (a collection of fashion items), and (ii)
generating an outfit with multimodal (images/text) specifications from a user.
To this end, we propose to jointly learn a visual-semantic embedding and the
compatibility relationships among fashion items in an end-to-end fashion. More
specifically, we consider a fashion outfit to be a sequence (usually from top
to bottom and then accessories) and each item in the outfit as a time step.
Given the fashion items in an outfit, we train a bidirectional LSTM (Bi-LSTM)
model to sequentially predict the next item conditioned on previous ones to
learn their compatibility relationships. Further, we learn a visual-semantic
space by regressing image features to their semantic representations aiming to
inject attribute and category information as a regularization for training the
LSTM. The trained network can not only perform the aforementioned
recommendations effectively but also predict the compatibility of a given
outfit. We conduct extensive experiments on our newly collected Polyvore
dataset, and the results provide strong qualitative and quantitative evidence
that our framework outperforms alternative methods.Comment: ACM MM 1
- …