2 research outputs found
Tree-Level Formalism
We review two novel techniques used to calculate tree-level scattering
amplitudes efficiently: MHV diagrams, and on-shell recursion relations. For the
MHV diagrams, we consider applications to tree-level amplitudes and focus in
particular on the N=4 supersymmetric formulation. We also briefly describe the
derivation of loop amplitudes using MHV diagrams. For the recursion relations,
after presenting their general proof, we discuss several applications to
massless theories with and without supersymmetry, to theories with massive
particles, and to graviton amplitudes in General Relativity. This article is an
invited review for a special issue of Journal of Physics A devoted to
"Scattering Amplitudes in Gauge Theories".Comment: 40 pages, 8 figures, invited review for a special issue of Journal of
Physics A devoted to "Scattering Amplitudes in Gauge Theories", R.
Roiban(ed), M. Spradlin(ed), A. Volovich(ed); v2: minor corrections,
references adde
Generic multiloop methods and application to N=4 super-Yang-Mills
We review some recent additions to the tool-chest of techniques for finding
compact integrand representations of multiloop gauge-theory amplitudes -
including non-planar contributions - applicable for N=4 super-Yang-Mills in
four and higher dimensions, as well as for theories with less supersymmetry. We
discuss a general organization of amplitudes in terms of purely cubic graphs,
review the method of maximal cuts, as well as some special D-dimensional
recursive cuts, and conclude by describing the efficient organization of
amplitudes resulting from the conjectured duality between color and kinematic
structures on constituent graphs.Comment: 42 pages, 18 figures, invited review for a special issue of Journal
of Physics A devoted to "Scattering Amplitudes in Gauge Theories", v2 minor
corrections, v3 added reference