4,351 research outputs found

    Interaction effects on 1D fermionic symmetry protected topological phases

    Full text link
    In free fermion systems with given symmetry and dimension, the possible topological phases are labeled by elements of only three types of Abelian groups, Z_1, Z_2, or Z. For example non-interacting 1D fermionic superconducting phases with S_z spin rotation and time-reversal symmetries are classified by Z. We show that with weak interactions, this classification reduces to Z_4. Using group cohomology, one can additionally show that there are only four distinct phases for such 1D superconductors even with strong interactions. Comparing their projective representations, we find all these four symmetry protected topological phases can be realized with free fermions. Further, we show that 1D fermionic superconducting phases with Z_n discrete S_z spin rotation and time-reversal symmetries are classified by Z_4 when n=even and Z_2 when n=odd; again, all these strongly interacting topological phases can be realized by non-interacting fermions. Our approach can be applied to systems with other symmetries to see which 1D topological phases can be realized by free fermions

    A γγ\gamma\gamma Collider for the 750 GeV Resonant State

    Get PDF
    Recent data collected by ATLAS and CMS at 13 TeV collision energy of the LHC indicate the existence of a new resonant state ϕ\phi with a mass of 750 GeV decaying into two photons γγ\gamma\gamma. The properties of ϕ\phi should be studied further at the LHC and also future colliders. Since only ϕ→γγ\phi \to \gamma\gamma decay channel has been measured, one of the best ways to extract more information about ϕ\phi is to use a γγ\gamma\gamma collider to produce ϕ\phi at the resonant energy. In this work we show how a γγ\gamma\gamma collider helps to verify the existence of ϕ\phi and to provide some of the most important information about the properties of ϕ\phi, such as branching fractions of ϕ→V1V2\phi\to V_1V_2. Here ViV_i can be γ\gamma, ZZ, or W±W^\pm. We also show that by studying angular distributions of the final γ\gamma's in γγ→ϕ→γγ\gamma\gamma \to \phi \to \gamma\gamma, one can obtain crucial information about whether this state is a spin-0 or a spin-2 state.Comment: ReTex, 12 page with 6 figures. Expanded discussion on distinguishing spin-0 and spin-2 cases. Several figures adde

    A three-loop radiative neutrino mass model with dark matter

    Full text link
    We present a model that generates small neutrino masses at three-loop level due to the existence of Majorana fermionic dark matter, which is stabilized by a Z2 symmetry. The model predicts that the lightest neutrino is massless. We show a prototypical parameter choice allowed by relevant experimental data, which favors the case of normal neutrino mass spectrum and the dark matter with m \sim 50-135 GeV and a sizable Yukawa coupling. It means that new particles can be searched for in future e+e- collisions.Comment: 7 pages, 3 figure
    • …
    corecore