14 research outputs found

    Effect of Corrosion Inhibitors on Chromate-free Passivation of Hot-Dip Galvanized Steel

    Get PDF
    Commercially available passivation methods for white-rust protection of Hot-Dip Galvanized steel have been applied for chromate passivation. However, hexavalent chromium (Cr-VI) is highly toxic and carcinogenic. Therefore, in this paper, we put forth a new means for white-rust protection of Hot-Dip Galvanized steel based on the effects of corrosion inhibitors. In this study, the passivation solution combines the advantages of inorganic salt passivation, silane passivation and resin passivation. The corrosion resistance of the inorganic and organic composite passivation films with corrosion inhibitors was determined by a neutral salt spray test and electrochemical Tafel polarization curves. The surface chemistry of the coatings was monitored by scanning electron microscopy (SEM), X-ray Photoelectron spectroscopy (XPS) and Fourier transform infrared reflection absorption spectroscopy (FTIR). And further studying on the formation mechanism of the passivation film was carried out. The SEM indicated that the top surface of the passivation film was transparent, smooth, uniform and compact. The XPS and FTIR results showed that the passivation film consisted mainly of organic functional groups including-(CH2)n-, -OH, N-H, C=O, C-Si, C-O-C, C-N, Si-O-Si, Si-O-C and so on. The corrosion resistance of passivation film with corrosion inhibitors was significantly improved than that of the passivation film without corrosion inhibitor. After 96h of the corrosion test, the corrosion area was found to be less than 5 %, which indicated that the passivation film greatly improved the corrosion resistance of the hot-dip galvanized sheet, and exhibited a very good protective effect so that can met some industrial applications.DOI: http://dx.doi.org/10.5755/j01.ms.24.3.16330</p

    Nanocrystallization of Coarse Primary Phases in Al- and Mg-Based Alloys Induced by HCPEB Treatment

    Get PDF
    This paper reports on a phenomenon associated with high-current pulsed electron beam (HCPEB) treatment: surface nanocrystallization of coarse primary phase in hypereutectic Al17.5Si and quasicrystal alloys after multiple pulses of HCPEB irradiation. The HCPEB treatment induces superfast heating and diffusion of alloying elements and heterogeneous nucleation in a melting solution, followed by rapid solidification and cooling of the material surfaces. Consequently, nanostructured surface layers can be achieved easily. Nano-Si phase and nano-quasicrystal phase formation on the modified surface layer of hypereutectic Al17.5Si alloy and quasicrystal alloy (Mg37Zn60Y3) show a potential for surface nanocrystallization of materials with enhanced properties by HCPEB treatment

    Study on Nanostructures Induced by High-Current Pulsed Electron Beam

    Get PDF
    Four techniques using high-current pulsed electron beam (HCPEB) were proposed to obtain surface nanostructure of metal and alloys. The first method involves the distribution of several fine Mg nanoparticles on the top surface of treated samples by evaporation of pure Mg with low boiling point. The second technique uses superfast heating, melting, and cooling induced by HCPEB irradiation to refine the primary phase or the second phase in alloys to nanosized uniform distributed phases in the matrix, such as the quasicrystal phase Mg30Zn60Y10 in the quasicrystal alloy Mg67Zn30Y3. The third technique involves the refinement of eutectic silicon phase in hypereutectic Al-15Si alloys to fine particles with the size of several nanometers through solid solution and precipitation refinement. Finally, in the deformation zone induced by HCPEB irradiation, the grain size can be refined to several hundred nanometers, such as the grain size of the hypereutectic Al-15Si alloys in the deformation zone, which can reach ~400 nm after HCPEB treatment for 25 pulses. Therefore, HCPEB technology is an efficient way to obtain surface nanostructure

    Improving Effect of Graphene on Electrochemical Properties of Fe2O3 Anode Materials

    No full text
    Transition metal oxides have a high initial charge-discharge capacity of 800&ndash;1000 mAh/g, the electrochemical performance, cyclic performance and rate performance of the composite of transition metal oxide and graphene have been improved due to the unique two-dimensional structure and excellent electrical conductivity of graphene. In this paper, iron oxides materials with different morphs were prepared by different hydrothermal reaction temperatures, and rGO/Fe2O3-175 &deg;C composites with different graphene ratios were synthesized and used in the anode of lithium ion batteries. The results show that nanorod-shaped Fe2O3 had better electrochemical performance than spherical Fe2O3. 0.2rGO/Fe2O3-175 &deg;C had the best cyclic performance, the first cyclic discharge capacity reaches 1372 mAh/g under the current density of 100 mA/g, and the cyclic reversible capacity remained at about 435 mAh/g after 50 cycles, illustrating that nanorods Fe2O3 and graphene composites can greatly buffer the volume expansion of Fe2O3

    Compressive Behavior of Al-TiB2 Composite Foams Fabricated under Increased Pressure

    No full text
    The application of increased pressure was used as a strategy to investigate the effect of different cell structures on the mechanical properties of Al-TiB2 composite foams. In situ Al-xTiB2 (x = 5, 10 wt.%) composites were foamed under three different pressures (0.1 MPa, 0.24 MPa, 0.4 MPa) through the liquid melt route. The macro-structure of the composite foams was analyzed in terms of cell size distribution measured by X-ray microcomputed tomography (micro-CT). It was found that the mean cell size decreases, and the cell size distribution range narrows with increasing pressure. Uniaxial compression tests revealed that the stress fluctuation (Rsd) of 10TiB2 foams is larger than that of 5TiB2 foams under the same pressure. Moreover, cell size refinement causes the simultaneous deformation of multi-layer cells, which leads to an enhancement in the energy absorption efficiency and specific energy absorption. The comparison of experimental data with theoretical predictions (G&amp;A model) is discussed

    The Microstructure of Nanocrystalline TiB2 Films Prepared by Chemical Vapor Deposition

    No full text
    Nanocrystalline titanium diboride (TiB2) ceramics films were prepared on a high purity graphite substrate via chemical vapor deposition (CVD). The substrate was synthesized by a gas mixture of TiCl4, BCl3, and H2 under 1000 °C and 10 Pa. Properties and microstructures of TiB2 films were also examined. The as-deposited TiB2 films had a nano-sized grain structure and the grain size was around 60 nm, which was determined by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. Further research found that a gas flow ratio of TiCl4/BCl3 had an influence on the film properties and microstructures. The analyzed results illustrated that the grain size of the TiB2 film obtained with a TiCl4/BCl3 gas flow ratio of 1, was larger than the grain size of the as-prepared TiB2 film prepared with a stoichiometric TiCl4/BCl3 gas flow ratio of 0.5. In addition, the films deposited faster at excessive TiCl4. However, under the condition of different TiCl4/BCl3 gas flow ratios, all of the as-prepared TiB2 films have a preferential orientation growth in the (100) direction

    A Study on the Effect of Graphene in Enhancing the Electrochemical Properties of SnO2-Fe2O3 Anode Materials

    No full text
    To enhance the conductivity and volume expansion during the charging and discharging of transition metal oxide anode materials, rGO-SnO2-Fe2O3 composite materials with different contents of rGO were prepared by the in situ hydrothermal synthesis method. The SEM morphology revealed a sphere-like fluffy structure, particles of the 0.4%rGO-10%SnO2-Fe2O3 composite were smaller and more compact with a specific surface area of 223.19 m2/g, the first discharge capacity of 1423.75 mAh/g, and the specific capacity could be maintained at 687.60 mAh/g even after 100 cycles. It exhibited a good ratio performance and electrochemical reversibility, smaller charge transfer resistance, and contact resistance, which aided in lithium-ion transport. Its superior electrochemical performance was due to the addition of graphene, which made the spherical particle size distribution more uniform, effectively lowering the volume expansion during the process of charging and discharging and improving the electrochemical cycle stability of the anode materials

    Study on the Corrosion Mechanism of Zn-5Al-0.5Mg-0.08Si Coating

    No full text
    A new type of hot-dip Zn-5Al-0.5Mg-0.08Si and Zn-5Al alloy coatings was performed on the cold rolled common steel. The hot-dip process was executed by self-made hot-dip galvanising simulator. SEM and EDS test results demonstrated that Mg was mainly distributed in crystal boundaries. XRD test results showed that the corrosion product of Zn-5Al-0.5Mg-0.08Si alloy coating was almost Zn5(OH)8C12â‹…H2O. The features of Zn5(OH)8C12â‹…H2O are low electric conductivity, insolubility and good adhesion.The corrosion resistance of alloy-coated steels was detected by neutral salt spray test. The microstructural characterization of the coating surface after neutral salt spray test and removing the corrosion products revealed that the corrosion process of Zn-5Al-0.5Mg-0.08Si coating was uniform and the coating surface was almost flat. As a result, the corrosion resistance of Zn-5Al-0.5Mg-0.08Si coating has a remarkable improvement with a factor of 9.2 compared with that of Zn-5Al coating

    Fabrication of Ti<sub>3</sub>Al-Based Intermetallic Alloy by Laser Powder Bed Fusion Using a Powder Mixture

    No full text
    Due to their light weight and outstanding mechanical properties at high temperatures, Ti3Al-based intermetallic alloys have driven increasing interest from both academia and industry; however, when additive manufacturing (AM) is applied to them, the outcome is hardly satisfying. In this work, we report a crack-free Ti3Al-based alloy fabrication by laser powder bed fusion (LPBF) using a mixture of a commercial Ti-48Al-2Cr-2Nb powder and a pure Ti powder. With the aid of a high cooling rate during LPBF, the as-built sample shows a ductile β phase with some partially-melted particles. After the heat treatment, partially-melted particles were dissolved, and the sample showed equiaxed α2 precipitates in the β matrix. The hardness was 515 ± 38 HV in the as-built sample and 475 ± 37 HV in the heat-treated sample. This study shows a novel strategy to fabricate crack-free Ti3Al-based alloy using LPBF from powder blends
    corecore