43 research outputs found
The Importance of Riverine Nutrient Supply for the Marine Silica Pump of Arctic Shelves: Evidence From the Laptev Sea
Arctic shelves receive a large load of nutrients from Arctic rivers, which play a major role in the biogeochemical cycles of the Arctic Ocean. In this study, we present measurements of dissolved silicon isotopes (δ30Si(OH)4) around the Laptev Sea and surface waters of the Eurasian shelves collected in October 2018 to document terrestrial silicon modifications on shelves and their contribution to the Arctic basin. Nitrogen was found to be depleted in surface waters and the limiting nutrient to primary production in the Laptev Sea, allowing excess silicon export to the central Arctic Ocean. Heavy δ30Si(OH)4 in the water column was linked to the strong biological removal of DSi on shelves, enabled by vigorous N recycling. From isotopically constrained processes, we estimate that >50% of the silicon from riverine inputs is removed within the Lena River delta and on the Laptev Sea shelf. Extrapolating this to major Siberian rivers, this leads to an export of 2.5 ¹ 0.8 kmol/s of riverine silicon through the Transpolar Drift. An updated isotopic budget of the Arctic Ocean reproduces the observed δ30Si(OH)4 signatures out of the Arctic Ocean and underlines the importance of biological processes in modulating silicon export. Given that opal burial fluxes on Artic shelves are controlled by denitrification and N-limitation, these processes are sensitive to ongoing climate change. As a consequence of higher riverine DSi inputs and shelf denitrification responding to productivity, it is inferred that silicon export from the Arctic Ocean could increase in the future, accompanied by lighter δ30Si(OH)4 signatures
An Arctic strait of two halves: The changing dynamics of nutrient uptake and limitation across the Fram Strait
The hydrography of the Arctic Seas is being altered by ongoing climate change, with knock-on effects to nutrient dynamics and primary production. As the major pathway of exchange between the Arctic and the Atlantic, the Fram Strait hosts two distinct water masses in the upper water column, northward flowing warm and saline Atlantic Waters in the east, and southward flowing cold and fresh Polar Surface Water in the west. Here, we assess how physical processes control nutrient dynamics in the Fram Strait using nitrogen isotope data collected during 2016 and 2018. In Atlantic Waters, a weakly stratified water column and a shallow nitracline reduce nitrogen limitation. To the west, in Polar Surface Water, nitrogen limitation is greater because stronger stratification inhibits nutrient resupply from deeper water and lateral nitrate supply from central Arctic waters is low. A historical hindcast simulation of ocean biogeochemistry from 1970 to 2019 corroborates these findings and highlights a strong link between nitrate supply to Atlantic Waters and the depth of winter mixing, which shoaled during the simulation in response to a local reduction in sea-ice formation. Overall, we find that while the eastern Fram Strait currently experiences seasonal nutrient replenishment and high primary production, the loss of winter sea ice and continued atmospheric warming has the potential to inhibit deep winter mixing and limit primary production in the future
Enhanced carbon pump inferred from relaxation of nutrient limitation in the glacial ocean
The modern Eastern Equatorial Pacific (EEP) Ocean is a large oceanic source of carbon to the atmosphere. Primary productivity over large areas of the EEP is limited by silicic acid and iron availability, and because of this constraint the organic carbon export to the deep ocean is unable to compensate for the outgassing of carbon dioxide that occurs through upwelling of deep waters. It has been suggested that the delivery of dust-borne iron to the glacial ocean, could have increased primary productivity and enhanced deep-sea carbon export in this region, lowering atmospheric carbon dioxide concentrations during glacial periods. Such a role for the EEP is supported by higher organic carbon burial rates documented in underlying glacial sediments but lower opal accumulation rates cast doubts on the importance of the EEP as an oceanic region for significant glacial carbon dioxide drawdown. Here we present a new silicon isotope record that suggests the paradoxical decline in opal accumulation rate in the glacial EEP results from a decrease in the silicon to carbon uptake ratio of diatoms under conditions of increased iron availability from enhanced dust input. Consequently, our study supports the idea of an invigorated biological pump in this region during the last glacial period that could have contributed to glacial carbon dioxide drawdown. Additionally, using evidence from silicon and nitrogen isotope changes, we infer that, in contrast to the modern situation, the biological productivity in this region is not constrained by the availability of iron, silicon and nitrogen during the glacial period. We hypothesize that an invigorated biological carbon dioxide pump constrained perhaps only by phosphorus limitation was a more common occurrence in low-latitude areas of the glacial ocean
Silica burial enhanced by iron limitation in oceanic upwelling margins
In large swaths of the ocean, primary production by diatoms may be limited by the availability of silica, which in turn limits the biological uptake of carbon dioxide. The burial of biogenic silica in the form of opal is the main sink of marine silicon. Opal burial occurs in equal parts in iron-limited open-ocean provinces and upwelling margins, especially the eastern Pacific upwelling zone. However, it is unclear why opal burial is so efficient in this margin. Here we measure fluxes of biogenic material, concentrations of diatom-bound iron and silicon isotope ratios using sediment traps and a sediment core from the Gulf of California upwelling margin. In the sediment trap material, we find that periods of intense upwelling are associated with transient iron limitation that results in a high export of silica relative to organic carbon. A similar correlation between enhanced silica burial and iron limitation is evident in the sediment core, which spans the past 26,000 years. A global compilation also indicates that hotspots of silicon burial in the ocean are all characterized by high silica to organic carbon export ratios, a diagnostic trait for diatoms growing under iron stress. We therefore propose that prevailing conditions of silica limitation in the ocean are largely caused by iron deficiency imposing an indirect constraint on oceanic carbon uptake
Anthropogenic nitrogen pollution threats and challenges to the health of South Asian coral reefs
Nitrogen pollution is a widespread and growing problem in the coastal waters of South Asia yet the ecological impacts on the regionâs coral ecosystems are currently poorly known and understood. South Asia hosts just under 7% of global coral reef coverage but has experienced significant and widespread coral loss in recent decades. The extent to which this coral ecosystem decline at the regional scale can be attributed to the multiple threats posed by nitrogen pollution has been largely overlooked in the literature. Here, we assess the evidence for nitrogen pollution impacts on corals in the central Indian Ocean waters of India, Sri Lanka and the Maldives. We find that there is currently limited evidence with which to clearly demonstrate widespread impacts on coral reefs from nitrogen pollution, including from its interactions with other stressors such as seawater warming. However, this does not prove there are no significant impacts, but rather it reflects the paucity of appropriate observations and related understanding of the range of potential impacts of nitrogen pollution at individual, species and ecosystem levels. This situation presents significant research, management and conservation challenges given the wide acceptance that such pollution is problematic. Following from this, we recommend more systematic collection and sharing of robust observations, modelling and experimentation to provide the baseline on which to base prescient pollution control action
Recommended from our members
Marine oxygen production and open water supported an active nitrogen cycle during the Marinoan Snowball Earth
The Neoproterozoic Earth was punctuated by two low-latitude Snowball Earth glaciations. Models permit oceans with either total ice cover or substantial areas of open water. Total ice cover would make an anoxic ocean likely, and would be a formidable barrier to biologic survival. However, there are no direct data constraining either the redox state of the ocean or marine biological productivity during the glacials. Here we present iron-speciation, redox-sensitive trace element, and nitrogen isotope data from a Neoproterozoic (Marinoan) glacial episode. Iron-speciation indicates deeper waters were anoxic and Fe-rich, while trace element concentrations indicate surface waters were in contact with an oxygenated atmosphere. Furthermore, synglacial sedimentary nitrogen is isotopically heavier than the modern atmosphere, requiring a biologic cycle with nitrogen fixation, nitrification and denitrification. Our results indicate significant regions of open marine water and active biologic productivity throughout one of the harshest glaciations in Earth history
No iron fertilization in the equatorial Pacific Ocean during the last ice age
The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron1. Greater atmospheric dust deposition2 could have fertilized the equatorial Pacific with iron during the last ice ageâthe Last Glacial Period (LGP) but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the 232Th proxy), phytoplankton productivity (using opal, 231Pa/230Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ15N) from six cores in the central equatorial Pacific for the Holocene (0â10,000 years ago) and the LGP (17,000â27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region7,8. Thus, ice-age iron fertilization in the Subantarctic Zone would have ultimately worked to lower, not raise, equatorial Pacific productivity
Nutrient cycling in the Atlantic basin: the evolution of nitrate isotope signatures in water masses
A basin-wide transect of nitrate isotopes (δ15NNO3, δ18ONO3), across the UK GEOTRACES 40°S
transect in the South Atlantic is presented. This data set is used to investigate Atlantic nutrient cycling
and the communication pathways of nitrogen cycling processes in the global ocean. Intermediate waters
formed in the subantarctic are enriched in δ15NNO3 and δ18ONO3 from partial utilization of nitrate by
phytoplankton and distant denitrification processes, transporting heavy isotope signatures to the subtropical
Atlantic. Water mass modification through the Atlantic is investigated by comparing data from 40°S
(South Atlantic) and 30°N (North Atlantic). This reveals that nitrate in the upper intermediate waters is
regenerated as it transits through the subtropical Atlantic, as evidenced by decreases in δ18ONO3. We
document diazotrophy-producing high N:P particle ratios (18â21:1) for remineralization, which is further
confirmed by a decrease in δ15NNO3 through the subtropical Atlantic. Thesemodifications influence the isotopic
signatures of the North Atlantic Deep Water (NADW) which is subsequently exported from the Atlantic to
the Southern Ocean. This study reveals the dominance of recycling processes and diazotrophy on nitrate
cycling in the Atlantic. These processes provide a source of low δ15NNO3 to the Southern Ocean via the
NADW, to counteract enrichment in δ15NNO3 from water column denitrification in the Indo/Pacific basins.
We hence identify the Southern Ocean as a key hub through which denitrification and N2 fixation communicate
in the ocean through deepwater masses. Therefore, the balancing of the oceanic N budget and isotopic
signatures require time scales of oceanic mixing