13 research outputs found

    In vitro acellular dissolution of mineral fibres: A comparative study

    Get PDF
    The study of the mechanisms by which mineral fibres promote adverse effects in both animals and humans is a hot topic of multidisciplinary research with many aspects that still need to be elucidated. Besides length and diameter, a key parameter that determines the toxicity/pathogenicity of a fibre is biopersistence, one component of which is biodurability. In this paper, biodurability of mineral fibres of social and economic importance (chrysotile, amphibole asbestos and fibrous erionite) has been determined for the first time in a systematic comparative way from in vitro acellular dissolution experiments. Dissolution was possible using the Gamble solution as simulated lung fluid (pH = 4 and at body temperature) so to reproduce the macrophage phagolysosome environment. The investigated mineral fibres display very different dissolution rates. For a 0.25 μm thick fibre, the calculated dissolution time of chrysotile is in the range 94-177 days, very short if compared to that of amphibole fibres (49-245 years), and fibrous erionite (181 years). Diffraction and SEM data on the dissolution products evidence that chrysotile rapidly undergoes amorphization with the formation of a nanophasic silica-rich fibrous metastable pseudomorph as first dissolution step whereas amphibole asbestos and fibrous erionite show minor signs of dissolution even after 9-12 months

    Where is iron in erionite? A multidisciplinary study on fibrous erionite-Na from Jersey (Nevada, USA)

    Get PDF
    Fibrous erionite is a mineral fibre of great concern but to date mechanisms by which it induces cyto- and geno-toxic damage, and especially the role of iron associated to this zeolite species, remain poorly understood. One of the reasons is that we still don\u2019t know exactly where iron is in natural erionite. This work is focused on fibrous erionite-Na from Jersey (Nevada, USA) and attempts to draw a general model of occurrence of iron in erionite and relationship with toxicity mechanisms. It was found that iron is present as 6-fold coordinated Fe3+ not part of the zeolite structure. The heterogeneous nature of the sample was revealed as receptacle of different iron-bearing impurities (amorphous iron-rich nanoparticles, micro-particles of iron oxides/hydroxides, and flakes of nontronite). If iron is not part of the structure, its role should be considered irrelevant for erionite toxicity, and other factors like biopersistence should be invoked. An alternative perspective to the proposed model is that iron rich nano-particles and nontronite dissolve in the intracellular acidic environment, leaving a residue of iron atoms at specific surface sites anchored to the windows of the zeolite channels. These sites may be active later as low nuclearity groups

    TG/DSC study of the thermal behaviour of hazardous mineral fibres

    No full text
    This paper reports a systematic and comparative study of the thermal behaviour of fibres of social, health, economic and industrial relevance using thermogravimetric and differential scanning calorimetry (TG/DSC). The mineral fibres selected for the study are: three chrysotile samples, crocidolite, tremolite asbestos, amosite, anthophyllite asbestos and asbestiform erionite. Powder X-ray diffraction and scanning electron microscopy were used for the characterization of the mineral fibres before and after heating at 1000 or 1100 °C to identify the products of the thermal decomposition at a microscopic and structural scale and characterize their thermal behaviour. TG/DSC data allowed the determination of the structural water content and temperature stability. Furthermore, thermal analysis provided a sensitive and reliable technique for the detection of small quantities of different mineral phases occurring as impurities. After thermal treatment, fibrous samples were completely transformed into various iron oxide, cristobalite and other silicate phases which preserved the original overall fibrous morphology (as pseudomorphosis). Only crocidolite at 1100 °C was partially melted, and an amorphous surface was observed

    The crystal structure of mineral fibres. 3. Actinolite asbestos

    Get PDF
    The present work reports chemical and structural data of actinolite asbestos from Aurina Valley, Bolzano (Italy). The chemical composition was determined using EMPA and TG analysis, and the Fe3+/Fetot ratio was accurately evaluated with independent 57Fe M\uf6ssbauer spectroscopy. Morphology and crystallinity were also investigated through SEM and TEM investigations. Crystal structure was refined using high-resolution synchrotron XRPD data. The iron content of Aurina Valley sample is lower compared to two representative asbestiform actinolite samples (with structure refinement) taken from the literature (FeOtot 7.77 wt% against 12\uf713 wt%, respectively), accounting for the reduced cell volume here measured (910.29 \uc5\ub3 against 912\uf7918 \uc5\ub3, respectively). Refined site scattering values of Aurina Valley sample are in agreement with those calculated from chemical compositions, and the optimized structural formula is: K0.02Na0.05(Na0.08Ca1.92)\u1a9=2.00(Mg3.80Fe2+0.79Fe3+0.11Al0.20Mn0.05Ni0.02Cr0.01)\u1a9=4.98(Si7.67Al0.25)\u1a9=7.92O21.69(OH)2.31. The C sites M(1), M(2) and M(3) are occupied by Mg and Fe in a proportion of ~4:1, whereas the M(4) site contains mainly Ca and a very small amount of Na. Iron exclusively occupies the octahedral C sites, with Fe 2+ ions occurring at the M(1,2,3) sites and the small amount of Fe 3+ (13% of Fe tot) ordered at the M(2) site. The refined crystal structure and cation distribution are fully consistent with results previously obtained on asbestiform and non-asbestiform samples belonging to the tremolite-actinolite-ferro\u2013 actinolite substitutional series

    The crystal structure of mineral fibres. 2. Amosite and fibrous anthophyllite

    No full text
    This study reports for the frst time crystal-structure data for amosite and fibrous anthophyllite. The chemical composition of the two fibre species was determined from EMPA. Crystal structures were refned using powder-diffraction data, using both laboratory sources and synchrotron radiation. Results were compared with the available literature data for the non-fibrous varieties grunerite and anthophyllite, respectively. The calculated site-occupancies for all samples are in agreement with the chemical compositions calculated from EMPA. The existing structure models of grunerite and orthorhombic anthophyllite also applies to the corresponding fibrous varieties amosite and fibrous anthophyllite, respectively. In amosite, both Fe 2+ and Fe 3+ atoms are found at the sites M(1), M(2) and M(3) and Fe 2+ ions is the only atomic species found at site M(4). Mg is disordered over the C sites with a preference for site M(2). Minor Ca and Na have been assigned to the A site. In fibrous anthophyllite, Mg is the only atomic species found at the M1, M2 and M3 sites. Fe 2+ , Mg (and minor Mn) have been assigned to the M4 site, whereas minor Ca has been assigned to the A site. In both structures, the environment at the M(4) site in amosite and M4 site in fibrous anthophyllite is highly distorted. This work can be considered a basis for studies aimed at understanding the potential toxicity/pathogenicity of these mineral fibres

    The crystal structure of mineral fibres. 1. Chrysotile

    Get PDF
    This work reports the results of the structural study of three representative chrysotile samples of different provenance (Canadian UICC, and Italian Balangero and Valmalenco). Chemical composition was determined using EMPA and TG data. An innovative wet cryo-milling procedure was used to powder the flexible and durable chrysotile fibres. X-ray powder diffraction patterns were collected using both conventional and nonconventional sources. Collected data were used for Rietveld structural refinements and results were compared with available literature data. The three samples display similar structure models, although small differences were detected in the position of the oxygen atoms. Both the structural refinements and spectroscopic investigations confirms that Fe 2+ and Fe 3+ atoms in chrysotile are located in the octahedral cavities only, substituting for Mg 2+ . Regarding the atom coordinates, UICC chrysotile is the closest to the model reported by Falini et al. (2004). About the lattice parameters, the Valmalenco chrysotile is the closest, if compared with the Balangero and UICC, to both the model proposed by Whittaker (1956a,b) and Falini et al. (2004). This work is intended as a basis for subsequent studies aimed at understanding the toxicity of these mineral fibres

    Assessment of the potential hazard represented by natural raw materials containing mineral fibres—The case of the feldspar from Orani, Sardinia (Italy)

    No full text
    This work describes the nature of the potentially hazardous fibrous amphibole found in the Orani's feldspar mine (Sardinia, Italy). To identify its nature, a protocol of analysis including morphometric, chemical and crystallographic characterizations was applied. Thanks to this approach, it was possible to classify the observed fibres as tremolite after comparing chemical data, SEM/TEM observations, FTIR/ Raman spectra and X-ray diffraction data with those reported for a standard sample. The unit cell parameters of the investigated tremolite phase are a = 9.82(1) Å, b = 18.08(3) Å, c = 5.27(1) Å, and the angle β corresponds to 104.4(1)°. The mean concentration of asbestos tremolite in the Orani's feldspar is 0.28 wt%. Most of the fibres (0.26 wt%) are respirable ‘regulated’ fibres, representing a potential hazard. Because the total amount of tremolite in the sample is 0.6 wt%, a large fraction of it has a crystal habit other than fibrous-asbestiform or acicular. The obtained results allowed us to suggest possible solutions for a safe exploitation and mineral processing of the Orani's mine. The procedure proposed herein may be a general tool suitable to identify the mineralogical nature of fibrous minerals in raw materials and assess if they may represent a potential health/environmental hazard

    Mineral fibres and environmental monitoring: A comparison of different analytical strategies in New Caledonia

    Get PDF
    Covered by ultrabasic units for more than a third of its surface, the New Caledonia (South West Pacific) is one of the largest world producers of Ni-ore from lateritic deposits. Almost all outcrops of geological units and open mines contain serpentine and amphibole, also as asbestos varieties. In this geological context, in which weathering processes had a great contribution in the production and dispersion of mineral fibres into the environment, the development of a routinely analytical strategy, able to discriminate an asbestiform fibre from a non-harmful particle, is a pivotal requisite. However, the acquisition of all these parameters is necessary for determining the risk associated to fibres exposition. A multidisciplinary routinely approach, based on the use of complementary simply-to-use but reliable analytical methods is the only possible strategy. In addition, the instrumental apparatus must be easily transportable on the field, directly on the mining site. The employment of specialized tools such as Polarized Light Microscopy associated to Dispersion Staining method (PLM/DS) and portable Raman spectroscopy for identification of environmental asbestos, are proved extremely effective in the improvement of the performance and rapidity of data acquisition and interpretation. Both PLM/DS and handheld Raman devices confirmed to be discriminant in the detection and characterization of asbestos fibres for both serpentine and amphibole. Furthermore, these techniques proved extremely effective even in the presence of strongly fibrous and altered samples

    Mineral fibres and environmental monitoring: A comparison of different analytical strategies in New Caledonia

    No full text
    International audienceCovered by ultrabasic units for more than a third of its surface, the New Caledonia (South West Pacific) is one of the largest world producers of Ni-ore from lateritic deposits. Almost all outcrops of geological units and open mines contain serpentine and amphibole, also as asbestos varieties. In this geological context, in which weathering processes had a great contribution in the production and dispersion of mineral fibres into the environment, the development of a routinely analytical strategy, able to discriminate an asbestiform fibre from a non-harmful particle, is a pivotal requisite. However, the acquisition of all these parameters is necessary for determining the risk associated to fibres exposition. A multidisciplinary routinely approach, based on the use of complementary simply-to-use but reliable analytical methods is the only possible strategy. In addition, the instrumental apparatus must be easily transportable on the field, directly on the mining site. The employment of specialized tools such as Polarized Light Microscopy associated to Dispersion Staining method (PLM/DS) and portable Raman spectroscopy for identification of environmental asbestos, are proved extremely effective in the improvement of the performance and rapidity of data acquisition and interpretation. Both PLM/DS and handheld Raman devices confirmed to be discriminant in the detection and characterization of asbestos fibres for both serpentine and amphibole. Furthermore, these techniques proved extremely effective even in the presence of strongly fibrous and altered samples
    corecore