660 research outputs found
A Schwarz Method for the Magnetotelluric Approximation of Maxwell's equations
The magnetotelluric approximation of the Maxwell's equations is used to model
the propagation of low frequency electro-magnetic waves in the Earth's
subsurface, with the purpose of reconstructing the presence of mineral or oil
deposits. We propose a classical Schwarz method for solving this
magnetotelluric approximation of the Maxwell equations, and prove its
convergence using maximum principle techniques. This is not trivial, since
solutions are complex valued, and we need a new result that the magnetotelluric
approximations satisfy a maximum modulus principle for our proof. We illustrate
our analysis with numerical experiments.Comment: 9 pages, 3 figure
Two-axis bend measurement with Bragg gratings in multicore optical fiber
We describe what is to our knowledge the first use of fiber Bragg gratings written into three separate cores of a multicore fiber for two-axis curvature measurement. The gratings act as independent, but isothermal, fiber strain gauges for which local curvature determines the difference in strain between cores, permitting temperature-independent bend measurement. (C) 2003 Optical Society of America
MagicFace: Stepping into Character through an Augmented Reality Mirror
Augmented Reality (AR) is coming of age and appearing in various smartphone apps. One emerging AR type uses the front-facing camera and overlays a user's face with digital features that transform the physical appearance, making the user look like someone else, such as a popstar or a historical character. However, little is known about how people react to such stepping into character and how convincing they perceive it to be. We developed an app with two Egyptian looks, MagicFace, which was situated both in an opera house and a museum. In the first setting, people were invited to use the app, while in the second setting they came across it on their own when visiting the exhibition. Our findings show marked differences in how people approach and experience the MagicFace in these different contexts. We discuss how realistic and compelling this kind of AR technology is, as well as its implications for educational and cultural settings
Schwarz Waveform Relaxation Methods for Systems of Semi-Linear Reaction-Diffusion Equations
Domain decomposition methods in science and engineering XIX, LNCSE, Springer Verlag, 2010.Schwarz waveform relaxation methods have been studied for a wide range of scalar linear partial differential equations (PDEs) of parabolic and hyperbolic type. They are based on a space-time decomposition of the computational domain and the subdomain iteration uses an overlapping decomposition in space. There are only few convergence studies for non-linear PDEs. We analyze in this paper the convergence of Schwarz waveform relaxation applied to systems of semi-linear reaction-diffusion equations. We show that the algorithm converges linearly under certain conditions over long time intervals. We illustrate our results, and further possible convergence behavior, with numerical experiments
Randomized clinical trial on epidural versus patient-controlled analgesia for laparoscopic colorectal surgery within an enhanced recovery pathway.
OBJECTIVE: To compare epidural analgesia (EDA) to patient-controlled opioid-based analgesia (PCA) in patients undergoing laparoscopic colorectal surgery.
BACKGROUND: EDA is mainstay of multimodal pain management within enhanced recovery pathways [enhanced recovery after surgery (ERAS)]. For laparoscopic colorectal resections, the benefit of epidurals remains debated. Some consider EDA as useful, whereas others perceive epidurals as unnecessary or even deleterious.
METHODS: A total of 128 patients undergoing elective laparoscopic colorectal resections were enrolled in a randomized clinical trial comparing EDA versus PCA. Primary end point was medical recovery. Overall complications, hospital stay, perioperative vasopressor requirements, and postoperative pain scores were secondary outcome measures. Analysis was performed according to the intention-to-treat principle.
RESULTS: Final analysis included 65 EDA patients and 57 PCA patients. Both groups were similar regarding baseline characteristics. Medical recovery required a median of 5 days (interquartile range [IQR], 3-7.5 days) in EDA patients and 4 days (IQR, 3-6 days) in the PCA group (P = 0.082). PCA patients had significantly less overall complications [19 (33%) vs 35 (54%); P = 0.029] but a similar hospital stay [5 days (IQR, 4-8 days) vs 7 days (IQR, 4.5-12 days); P = 0.434]. Significantly more EDA patients needed vasopressor treatment perioperatively (90% vs 74%, P = 0.018), the day of surgery (27% vs 4%, P < 0.001), and on postoperative day 1 (29% vs 4%, P < 0.001), whereas no difference in postoperative pain scores was noted.
CONCLUSIONS: Epidurals seem to slow down recovery after laparoscopic colorectal resections without adding obvious benefits. EDA can therefore not be recommended as part of ERAS pathways in laparoscopic colorectal surgery
Fourier Method for Approximating Eigenvalues of Indefinite Stekloff Operator
We introduce an efficient method for computing the Stekloff eigenvalues
associated with the Helmholtz equation. In general, this eigenvalue problem
requires solving the Helmholtz equation with Dirichlet and/or Neumann boundary
condition repeatedly. We propose solving the related constant coefficient
Helmholtz equation with Fast Fourier Transform (FFT) based on carefully
designed extensions and restrictions of the equation. The proposed Fourier
method, combined with proper eigensolver, results in an efficient and clear
approach for computing the Stekloff eigenvalues.Comment: 12 pages, 4 figure
A Brain System for Auditory Working Memory
The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex
An adaptable research platform for ex vivo normothermic machine perfusion of the liver
PURPOSE: This paper presents an assessment of a low-cost organ perfusion machine designed for use in research settings. The machine is modular and versatile in nature, built on a robotic operating system (ROS2) pipeline allowing for the addition of specific sensors for different research applications. Here we present the system and the development stages to achieve viability of the perfused organ. METHODS: The machine's perfusion efficacy was assessed by monitoring the distribution of perfusate in livers using methylene blue dye. Functionality was evaluated by measuring bile production after 90 min of normothermic perfusion, while viability was examined using aspartate transaminase assays to monitor cell damage throughout the perfusion. Additionally, the output of the pressure, flow, temperature, and oxygen sensors was monitored and recorded to track the health of the organ during perfusion and assess the system's capability of maintaining the quality of data over time. RESULTS: The results show the system is capable of successfully perfusing porcine livers for up to three hours. Functionality and viability assessments show no deterioration of liver cells once normothermic perfusion had occurred and bile production was within normal limits of approximately 26 ml in 90 min showing viability. CONCLUSION: The developed low-cost perfusion system presented here has been shown to keep porcine livers viable and functional ex vivo. Additionally, the system is capable of easily incorporating several sensors into its framework and simultaneously monitor and record them during perfusion. The work promotes further exploration of the system in different research domains
Control of human cytomegalovirus replication by liver resident natural killer cells
Natural killer cells are considered to be important for control of human cytomegalovirus– a major pathogen in immune suppressed transplant patients. Viral infection promotes the development of an adaptive phenotype in circulating natural killer cells that changes their anti-viral function. In contrast, less is understood how natural killer cells that reside in tissue respond to viral infection. Here we show natural killer cells resident in the liver have an altered phenotype in cytomegalovirus infected individuals and display increased anti-viral activity against multiple viruses in vitro and identify and characterise a subset of natural killer cells responsible for control. Crucially, livers containing natural killer cells with better capacity to control cytomegalovirus replication in vitro are less likely to experience viraemia post-transplant. Taken together, these data suggest that virally induced expansion of tissue resident natural killer cells in the donor organ can reduce the chance of viraemia post-transplant
Neural phase locking predicts BOLD response in human auditory cortex
Natural environments elicit both phase-locked and non-phase-locked neural responses to the stimulus in the brain. The interpretation of the BOLD signal to date has been based on an association of the non-phase-locked power of high-frequency local field potentials (LFPs), or the related spiking activity in single neurons or groups of neurons. Previous studies have not examined the prediction of the BOLD signal by phase-locked responses. We examined the relationship between the BOLD response and LFPs in the same nine human subjects from multiple corresponding points in the auditory cortex, using amplitude modulated pure tone stimuli of a duration to allow an analysis of phase locking of the sustained time period without contamination from the onset response. The results demonstrate that both phase locking at the modulation frequency and its harmonics, and the oscillatory power in gamma/high-gamma bands are required to predict the BOLD response. Biophysical models of BOLD signal generation in auditory cortex therefore require revision and the incorporation of both phase locking to rhythmic sensory stimuli and power changes in the ensemble neural activity
- …