21 research outputs found
Synthèse et caractérisation d'hydrogels macroporeux contenant des nanoparticules pour des procédés catalytiques hétérogènes en écoulement continu
RÉSUMÉ : Les nanoparticules (NPs) métalliques catalysent un grand nombre de réactions chimiques dans des conditions relativement douces et vertes, mais également avec une sélectivité élevée. C’est pourquoi l’industrie chimique s’est orientée de plus en plus vers les procédés « nanocatalysés » depuis les deux dernières décennies. Le problème principal, relié à l’utilisation de nanoparticules catalytiques, provient de leurs petites dimensions : la taille nanoscopique (~ 1 – 10 nm) rend les particules thermodynamiquement instables et en conséquence, elles s’agglomèrent, coalescent, et perdent leur propriétés catalytiques. De surcroît, la récupération des nanoparticules dispersées dans le milieu réactionnel nécessite des procédés sophistiqués et dispendieux.---------ABSTRACT : Metallic nanoparticles (NPs) catalyze a large number of chemical reactions under relatively mild and green conditions, and with high selectivity. As a result, during the last two decades, the chemical industry has become increasingly focused and interested on « nanocatalyzed » processes. The main problem with the use of catalytic nanoparticles arises from their dimensions : the nanoscopic size (~ 1 – 10 nm) renders the particles thermodynamically unstable and as a result, they agglomerate, coalesce, and lose their catalytic properties. In addition, nanoparticles recovery from the reaction medium requires sophisticated and expensive processes
Enhancing and Tuning the Response of Environmentally Sensitive Hydrogels With Embedded and Interconnected Pore Networks
Porous and temperature-sensitive
polyÂ(<i>N</i>-isopropylacrylamide)
(PNIPAam) hydrogels with tunable and enhanced response properties
were prepared by using porous polyÂ(ε-caprolactone) (PCL) molds.
The molds were obtained from melt-processed cocontinuous polymer blends
of ethylene propylene diene monomer (EPDM) and PCL. Quiescent annealing
of the blends resulted in microstructure coarsening, and subsequent
extraction of the EPDM phase yielded the molds. Ultimately, it allowed
control over the average gel pore size from 20 to 300 ÎĽm. The
gelling solution was injected within the molds, which were subsequently
extracted, yielding hydrogels with fully interconnected pores. The
porous gels display enhanced thermoresponsive properties in water:
tunable, fully reversible and significantly faster swelling and deswelling
responses following a temperature change across the PNIPAam lower
critical solution temperature, as compared to nonporous gels. The
fabrication process is compatible with a broad choice of gel chemistries,
and allows the fabrication of complex 3D shapes of various sizes
Tailored Macroporous Hydrogels with Nanoparticles Display Enhanced and Tunable Catalytic Activity
This
work demonstrates that a model system of polyÂ(<i>N</i>-isopropylacrylamide)
(PNIPAam) macroporous hydrogels, with tailored microstructures and
comprising gold (Au) or silver (Ag) nanoparticles, display enhanced
and tunable catalytic activity. These nanocomposites are prepared
using polymer templates obtained from melt-processed cocontinuous
polymer blends. The reaction rate, controlled by both hydrogel porosity
and the PNIPAam lower critical solution temperature, increases by
more than an order of magnitude as compared to nonporous gels, and
is comparable to micro- or nanocarrier-based systems, with easier
catalyst recovery. The fabrication process is scalable, and is compatible
with broad choices of polymer blend, gel, and nanoparticle chemistries