271 research outputs found

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → ÎŒ+Ό−)/B(Bs → ÎŒ+Ό−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    First Measurement of Charm Production in its Fixed-Target Configuration at the LHC

    No full text
    International audienceThe first measurement of heavy-flavor production by the LHCb experiment in its fixed-target mode is presented. The production of J/ψ and D0 mesons is studied with beams of protons of different energies colliding with gaseous targets of helium and argon with nucleon-nucleon center-of-mass energies of sNN=86.6 and 110.4 GeV, respectively. The J/ψ and D0 production cross sections in pHe collisions in the rapidity range [2, 4.6] are found to be σJ/ψ=652±33(stat)±42(syst)   nb/nucleon and σD0=80.8±2.4(stat)±6.3(syst)  Όb/nucleon, where the first uncertainty is statistical and the second is systematic. No evidence for a substantial intrinsic charm content of the nucleon is observed in the large Bjorken-x region

    Model-Independent Observation of Exotic Contributions to B0→J/ψK+π−B^0\to J/\psi K^+\pi^- Decays

    No full text
    International audienceAn angular analysis of B0→J/ψK+π- decays is performed, using proton-proton collision data corresponding to an integrated luminosity of 3  fb-1 collected with the LHCb detector. The m(K+π-) spectrum is divided into fine bins. In each m(K+π-) bin, the hypothesis that the three-dimensional angular distribution can be described by structures induced only by K* resonances is examined, making minimal assumptions about the K+π- system. The data reject the K*-only hypothesis with a large significance, implying the observation of exotic contributions in a model-independent fashion. Inspection of the m(J/ψπ-) vs m(K+π-) plane suggests structures near m(J/ψπ-)=4200 and 4600 MeV

    Study of ΄\Upsilon production in ppPb collisions at sNN=8.16\sqrt{s_{NN}}=8.16 TeV

    Get PDF
    International audienceThe production of ϒ(nS) mesons (n = 1, 2, 3) in pPb and Pbp collisions at a centre-of-mass energy per nucleon pair sNN=8.16 \sqrt{s_{\mathrm{NN}}}=8.16 TeV is measured by the LHCb experiment, using a data sample corresponding to an integrated luminosity of 31.8 nb−1^{−1}. The ϒ(nS) mesons are reconstructed through their decays into two opposite-sign muons. The measurements comprise the differential production cross-sections of the ϒ(1S) and ϒ(2S) states, their forward-to-backward ratios and nuclear modification factors. The measurements are performed as a function of the transverse momentum pT_{T} and rapidity in the nucleon-nucleon centre-of-mass frame y∗^{*} of the ϒ(nS) states, in the kinematic range pT_{T} < 25 GeV/c and 1.5 < y∗^{*} < 4.0 (−5.0 < y∗^{*} < −2.5) for pPb (Pbp) collisions. In addition, production cross-sections for ϒ(3S) are measured integrated over phase space and the production ratios between all three ϒ(nS) states are determined. Suppression for bottomonium in proton-lead collisions is observed, which is particularly visible in the ratios. The results are compared to theoretical models

    Measurement of the CPCP-violating phase ϕs\phi_s from Bs0→J/ψπ+π−B_{s}^{0}\to J/\psi\pi^+\pi^- decays in 13 TeV pppp collisions

    No full text
    International audienceDecays of Bs0 and B‟0s mesons into J/ψπ+π− final states are studied in a data sample corresponding to 1.9 fb −1 of integrated luminosity collected with the LHCb detector in 13 TeV pp collisions. A time-dependent amplitude analysis is used to determine the final-state resonance contributions, the CP -violating phase ϕs=−0.057±0.060±0.011 rad, the decay-width difference between the heavier mass Bs0 eigenstate and the B0 meson of −0.050±0.004±0.004 ps −1 , and the CP -violating parameter |λ|=1.01−0.06+0.08±0.03 , where the first uncertainty is statistical and the second systematic. These results are combined with previous LHCb measurements in the same decay channel using 7 TeV and 8 TeV pp collisions obtaining ϕs=0.002±0.044±0.012 rad, and |λ|=0.949±0.036±0.019

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    No full text
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034cm−2s−1 2 \times 10^{34} \rm cm^{-2}s^{-1}, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CPCP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b→sℓ+ℓ−b\to s \ell^+\ell^- and b→dℓ+ℓ−b\to d \ell^+\ell^- transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0→Ό+Ό−)/B(Bs0→Ό+Ό−)B(B^0\to\mu^+\mu^-)/B(B_s^0\to \mu^+\mu^-). Probing charm CPCP violation at the 10−510^{-5} level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier
    • 

    corecore